详解Python装饰器由浅入深


Posted in Python onDecember 09, 2016

装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码。装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们以装饰函数为例子介绍其用法。要理解在Python中装饰器的原理,需要一步一步来。本文尽量描述得浅显易懂,从最基础的内容讲起。

(注:以下使用Python3.5.1环境)

一、Python的函数相关基础

第一,必须强调的是python是从上往下顺序执行的,而且碰到函数的定义代码块是不会立即执行它的,只有等到该函数被调用时,才会执行其内部的代码块。

def foo():
print("foo函数被运行了!") 
如果就这么样,foo里的语句是不会被执行的。
程序只是简单的将定义代码块读入内存中。

再看看,顺序执行的例子:

def foo():
 print("我是上面的函数定义!")
def foo():
 print("我是下面的函数定义!")
foo()
运行结果:
我是下面的函数定义

可见,因为顺序执行的原因,下面的foo将上面的foo覆盖了。因此,在Python中代码的放置位置是有要求的,不能随意摆放,函数体要放在被调用的语句之前。

 其次,我们还要先搞清楚几样东西:函数名、函数体、返回值,函数的内存地址、函数名加括号、函数名被当作参数、函数名加括号被当作参数、返回函数名、返回函数名加括号。对于如下的函数:

def foo():
 print("让我们干点啥!")
 return "ok"
 foo()  

     函数名:

foo

函数体:

第1-3行

返回值:

字符串“ok”

如果不显式给出return的对象,那么默认返回None

函数的内存地址:

当函数体被读进内存后的保存位置,它由标识符即函数名foo引用,
                                                   也就是说foo指向的是函数体在内存内的保存位置。

函数名加括号:

   例如foo(),函数的调用方法,只有见到这个括号,程序会根据
                                                   函数名从内存中找到函数体,然后执行它

再看下面这个例子:

def outer(func):
 def inner():
 print("我是内层函数!")
 return inner
def foo():
 print("我是原始函数!") 
outer(foo)
outer(foo())

在python中,一切都是对象,函数也不例外。因此可以将函数名,甚至函数名加括号进行调用的方式作为另一个函数的返回值。上面代码中,outer和foo是两个函数,outer(foo)表示将foo函数的函数名当做参数传递给outer函数并执行outer函数;outer(foo())表示将foo函数执行后的返回值当做参数传递给outer函数并执行outer函数,由于foo函数没有指定返回值,实际上它传递给了outer函数一个None。注意其中的差别,有没有括号是关键!

 同样,在outer函数内部,返回了一个inner,它是在outer函数内部定义的一个函数,注意,由于inner后面没有加括号,所以返回的是inner的函数体,实际上也就是inner这个名字,一个简单的引用而已。那么,如果outer函数返回的是inner()呢?现在你应该已经很清楚了,它会先执行inner函数的内容,然后返回个None给outer,outer再把这个None返回给调用它的对象。

 请记住,函数名、函数加括号可以被当做参数传递,也可以被当做返回值return,有没有括号是两个截然不同的意思!

二、装饰器的使用场景

    装饰器通常用于在不改变原有函数代码和功能的情况下,为其添加额外的功能。比如在原函数执行前先执行点什么,在执行后执行点什么。

 让我们通过一个例子来看看,装饰器的使用场景和体现的设计模式。(抱歉的是我设计不出更好的场景,只能引用武大神的案例加以演绎)

 有一个大公司,下属的基础平台部负责内部应用程序及API的开发,有上百个业务部门负责不同的业务,他们各自调用基础平台部提供的不同函数处理自己的业务,情况如下: 

# 基础平台部门开发了上百个函数
def f1():
 print("业务部门1数据接口......")
def f2():
 print("业务部门2数据接口......")
def f3():
 print("业务部门3数据接口......")
def f100():
 print("业务部门100数据接口......") 
#各部门分别调用
f1()
f2()
f3()
f100()

     由于公司在创业初期,基础平台部开发这些函数时,由于各种原因,比如时间,比如考虑不周等等,没有为函数调用进行安全认证。现在,平台部主管决定弥补这个缺陷,于是:

  第一回,主管叫来了一个运维工程师,工程师跑上跑下逐个部门进行通知,让他们在代码里加上认证功能,然而,当天他被开除了。

 第二回:主管又叫来了一个运维工程师,工程师用shell写了个复杂的脚本,勉强实现了功能。但他很快就回去接着做运维了,不会开发的运维不是好运维....

 第三回:主管叫来了一个python自动化开发工程师,哥们是这么干的:只对基础平台的代码进行重构,让N个业务部门无需做任何修改。这哥们很快也被开了,连运维也没得做。

def f1():
 #加入认证程序代码
 print("业务部门1数据接口......")
def f2():
 # 加入认证程序代码
 print("业务部门2数据接口......")
def f3():
 # 加入认证程序代码
 print("业务部门3数据接口......")
def f100():
 #加入认证程序代码
 print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

 第四回:主管又换了个 工程师,他是这么干的:定义个认证函数,原来其他的函数调用它,代码如下框。但是,主管依然不满意,不过这一次他解释了为什么。主管说:写代码要遵循开放封闭原则,虽然在这个原则主要是针对面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码内部不允许被修改,但外部可以被扩展,即:封闭:已实现的功能代码块;开放:对扩展开放。如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3......f100的内部进行代码修改。遗憾的是,工程师没有漂亮的女朋友,所以很快也被开除了。

def login():
 print("认证成功!")
def f1():
 login()
 print("业务部门1数据接口......")
def f2():
 login()
 print("业务部门2数据接口......")
def f3():
 login()
 print("业务部门3数据接口......")
def f100():
 login()
 print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

    第五回:已经没有时间让主管找别人来干这活了,他决定亲自上阵,并且打算在函数执行后再增加个日志功能。主管是这么想的:不会装饰器的主管不是好码农!要不为啥我能当主管,你只能被管呢?嘿嘿。他的代码如下:

#/usr/bin/env python
#coding:utf-8
def outer(func):
 def inner():
 print("认证成功!")
 result = func()
 print("日志添加成功")
 return result
 return inner
@outer
def f1():
 print("业务部门1数据接口......")
@outer
def f2():
 print("业务部门2数据接口......")
@outer
def f3():
 print("业务部门3数据接口......")
@outer
def f100():
 print("业务部门100数据接口......")
#各部门分别调用
f1()
f2()
f3()
f100()

对于上述代码,也是仅需对基础平台的代码进行拓展,就可以实现在其他部门调用函数 f1 f2 f3 f100 之前都进行认证操作,在操作结束后保存日志,并且其他业务部门无需他们自己的代码做任何修改,调用方式也不用变。“主管”写完代码后,觉得独乐了不如众乐乐,打算显摆一下,于是写了篇博客将过程进行了详细的说明。

 三、装饰器的内部原理、

 下面我们以f1函数为例进行说明:

def outer(func):
 def inner():
 print("认证成功!")
 result = func()
 print("日志添加成功")
 return result
 return inner
@outer
def f1():
 print("业务部门1数据接口......")

 运用我们在第一部分介绍的知识来分析一下上面这段代码:

  • 程序开始运行,从上往下编译,读到def outer(func):的时候,发现这是个“一等公民”->函数,于是把函数体加载到内存里,然后过。
  • 读到@outer的时候,程序被@这个语法糖吸引住了,知道这是个装饰器,按规矩要立即执行的,于是程序开始运行@后面那个名字outer所定义的函数。(相信没有人会愚蠢的将@outer写到别的位置,它只能放在被装饰的函数的上方最近处,不要空行。)
  • 程序返回到outer函数,开始执行装饰器的语法规则,这部分规则是定死的,是python的“法律”,不要问为什么。规则是:被装饰的函数的名字会被当作参数传递给装饰函数。装饰函数执行它自己内部的代码后,会将它的返回值赋值给被装饰的函数。 

如下图所示:

详解Python装饰器由浅入深

这里面需要注意的是:

  • @outer和@outer()有区别,没有括号时,outer函数依然会被执行,这和传统的用括号才能调用函数不同,需要特别注意!那么有括号呢?那是装饰器的高级用法了,以后会介绍。
  • 是f1这个函数名(而不是f1()这样被调用后)当做参数传递给装饰函数outer,也就是:func = f1,@outer等于outer(f1),实际上传递了f1的函数体,而不是执行f1后的返回值。
  • outer函数return的是inner这个函数名,而不是inner()这样被调用后的返回值。

如果你对第一部分函数的基础知识有清晰的了解,那么上面的内容你应该很容易理解。

 4. 程序开始执行outer函数内部的内容,一开始它又碰到了一个函数,很绕是吧?当然,你可以在 inner函数前后安排点别的代码,但它们不是重点,而且有点小麻烦,下面会解释。inner函数定义块被程序观察到后不会立刻执行,而是读入内存中(这是潜规则)。

 5. 再往下,碰到return inner,返回值是个函数名,并且这个函数名会被赋值给f1这个被装饰的函数,也就是f1 = inner。根据前面的知识,我们知道,此时f1函数被新的函数inner覆盖了(实际上是f1这个函数名更改成指向inner这个函数名指向的函数体内存地址,f1不再指向它原来的函数体的内存地址),再往后调用f1的时候将执行inner函数内的代码,而不是先前的函数体。那么先前的函数体去哪了?还记得我们将f1当做参数传递给func这个形参么?func这个变量保存了老的函数在内存中的地址,通过它就可以执行 老的函数体,你能在inner函数里看到result = func()这句代码,它就是这么干的!

 6.接下来,还没有结束。当业务部门,依然通过f1()的方式调用f1函数时,执行的就不再是老的f1函数的代码,而是inner函数的代码。在本例中,它首先会打印个“认证成功”的提示,很显然你可以换成任意的代码,这只是个示例;然后,它会执行func函数并将返回值赋值个变量result,这个func函数就是老的f1函数;接着,它又打印了“日志保存”的提示,这也只是个示例,可以换成任何你想要的;最后返回result这个变量。我们在业务部门的代码上可以用 r = f1()的方式接受result的值。

 7.以上流程走完后,你应该看出来了,在没有对业务部门的代码和接口调用方式做任何修改的同时,也没有对基础平台部原有的代码做内部修改,仅仅是添加了一个装饰函数,就实现了我们的需求,在函数调用前先认证,调用后写入日志。这就是装饰器的最大作用。

 问题:那么为什么我们要搞一个outer函数一个inner函数这么复杂呢?一层函数不行吗?

 答:请注意,@outer这句代码在程序执行到这里的时候就会自动执行outer函数内部的代码,如果不封装一下,在业务部门还未进行调用的时候,就执行了些什么,这和初衷有点不符。当然,如果你对这个有需求也不是不行。请看下面的例子,它只有一层函数。

def outer(func):
 print("认证成功!")
 result = func()
 print("日志添加成功")
 return result
@outer
def f1():
 print("业务部门1数据接口......")
# 业务部门并没有开始执行f1函数
执行结果:
认证成功!
业务部门1数据接口......
日志添加成功

看到没?我只是定义好了函数,业务部门还没有调用f1函数呢,程序就把工作全做了。这就是封装一层函数的原因。

四、装饰器的参数传递

 细心的朋友可能已经发现了,上面的例子中,f1函数没有参数,在实际情况中肯定会需要参数的,那参数怎么传递的呢?

 一个参数的情况:

def outer(func):
 def inner(username):
 print("认证成功!")
 result = func(username)
 print("日志添加成功")
 return result
 return inner
@outer
def f1(name):
print("%s 正在连接业务部门1数据接口......"%name)
# 调用方法
f1("jack")

在inner函数的定义部分也加上一个参数,调用func函数的时候传递这个参数,很好理解吧?可问题又来了,那么另外一个部门调用的f2有2个参数呢?f3有3个参数呢?你怎么传递?

很简单,我们有*args和**kwargs嘛!号称“万能参数”!简单修改一下上面的代码:

def outer(func):
 def inner(*args,**kwargs):
 print("认证成功!")
 result = func(*args,**kwargs)
 print("日志添加成功")
 return result
 return inner
@outer
def f1(name,age):
 print("%s 正在连接业务部门1数据接口......"%name)
# 调用方法
f1("jack",18)

五、更进一步的思考

 一个函数可以被多个函数装饰吗?可以的!看下面的例子!

def outer1(func):
 def inner(*args,**kwargs):
 print("认证成功!")
 result = func(*args,**kwargs)
 print("日志添加成功")
 return result
 return inner
def outer2(func):
 def inner(*args,**kwargs):
 print("一条欢迎信息。。。")
 result = func(*args,**kwargs)
 print("一条欢送信息。。。")
 return result
 return inner
 @outer1
@outer2
def f1(name,age):
 print("%s 正在连接业务部门1数据接口......"%name)
# 调用方法
f1("jack",18) 
执行结果:
认证成功!
一条欢迎信息。。。
jack 正在连接业务部门1数据接口......
一条欢送信息。。。
日志添加成功

更进一步的,装饰器自己可以有参数吗?可以的!看下面的例子:

# 认证函数
def auth(request,kargs):
 print("认证成功!")
# 日志函数
def log(request,kargs):
 print("日志添加成功")
# 装饰器函数。接收两个参数,这两个参数应该是某个函数的名字。
def Filter(auth_func,log_func):
 # 第一层封装,f1函数实际上被传递给了main_fuc这个参数
 def outer(main_func):
 # 第二层封装,auth和log函数的参数值被传递到了这里
 def wrapper(request,kargs):
 # 下面代码的判断逻辑不重要,重要的是参数的引用和返回值
 before_result = auth(request,kargs)
 if(before_result != None):
 return before_result;
 main_result = main_func(request,kargs)
 if(main_result != None):
 return main_result;
 after_result = log(request,kargs)
 if(after_result != None):
 return after_result;
 return wrapper
 return outer
# 注意了,这里的装饰器函数有参数哦,它的意思是先执行filter函数
# 然后将filter函数的返回值作为装饰器函数的名字返回到这里,所以,
# 其实这里,Filter(auth,log) = outer , @Filter(auth,log) = @outer
@Filter(auth,log)
def f1(name,age):
 print("%s 正在连接业务部门1数据接口......"%name)
# 调用方法
f1("jack",18)
运行结果:
认证成功!
jack 正在连接业务部门1数据接口......
日志添加成功

又绕晕了?其实你可以这么理解,先执行Filter函数,获得它的返回值outer,再执行@outer装饰器语法。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
Python实现抓取网页并且解析的实例
Sep 20 Python
Python基于select实现的socket服务器
Apr 13 Python
python操作 hbase 数据的方法
Dec 18 Python
python pandas 对series和dataframe的重置索引reindex方法
Jun 07 Python
Python日志模块logging基本用法分析
Aug 23 Python
win7 x64系统中安装Scrapy的方法
Nov 18 Python
Python实现的多进程拷贝文件并显示百分比功能示例
Apr 09 Python
pytorch:model.train和model.eval用法及区别详解
Feb 20 Python
在pytorch中实现只让指定变量向后传播梯度
Feb 29 Python
浅谈Python中文件夹和python package包的区别
Jun 01 Python
python如何获得list或numpy数组中最大元素对应的索引
Nov 16 Python
python中子类与父类的关系基础知识点
Feb 02 Python
python利用正则表达式提取字符串
Dec 08 #Python
基于python的七种经典排序算法(推荐)
Dec 08 #Python
Python序列操作之进阶篇
Dec 08 #Python
利用Python破解验证码实例详解
Dec 08 #Python
详解使用python crontab设置linux定时任务
Dec 08 #Python
Python 正则表达式入门(中级篇)
Dec 07 #Python
Python 正则表达式入门(初级篇)
Dec 07 #Python
You might like
PHP 类型转换函数intval
2009/06/20 PHP
PHP5.5和之前的版本empty函数的不同之处
2014/06/13 PHP
php程序内部post数据的方法
2015/03/31 PHP
php实现分页显示
2015/11/03 PHP
对比PHP对MySQL的缓冲查询和无缓冲查询
2016/07/01 PHP
Windows Server 2008 R2和2012中PHP连接MySQL过慢的解决方法
2016/07/02 PHP
修改Laravel自带的认证系统的User类的命名空间的步骤
2019/10/15 PHP
prototype 的说明 js类
2006/09/07 Javascript
简单JS代码压缩器
2006/10/12 Javascript
angularJS中$apply()方法详解
2015/01/07 Javascript
js实现鼠标悬停图片上时滚动文字说明的方法
2015/02/17 Javascript
第一章之初识Bootstrap
2016/04/25 Javascript
jQuery实现的简单百分比进度条效果示例
2016/08/01 Javascript
jQuery插件form-validation-engine正则表达式操作示例
2017/02/09 Javascript
详谈DOM简介及节点、属性、查找节点的方法
2017/11/16 Javascript
vue中实现左右联动的效果
2018/06/22 Javascript
详解在create-react-app使用less与antd按需加载
2018/12/06 Javascript
elementUI Tree 树形控件的官方使用文档
2019/04/25 Javascript
Js Snowflake(雪花算法)生成随机ID的实现方法
2020/08/26 Javascript
讲解Python中的标识运算符
2015/05/14 Python
python的mysqldb安装步骤详解
2017/08/14 Python
python关于矩阵重复赋值覆盖问题的解决方法
2019/07/19 Python
Python利用神经网络解决非线性回归问题实例详解
2019/07/19 Python
python 实现矩阵填充0的例子
2019/11/29 Python
Python Print实现在输出中插入变量的例子
2019/12/25 Python
Python实现CNN的多通道输入实例
2020/01/17 Python
详解Python中的分支和循环结构
2020/02/11 Python
python标准库os库的函数介绍
2020/02/12 Python
Python 私有属性和私有方法应用场景分析
2020/06/19 Python
python中取绝对值简单方法总结
2020/07/24 Python
W3C公布最新的HTML5标准草案
2008/10/17 HTML / CSS
服装设计行业个人的自我评价
2013/12/20 职场文书
财务管理专业自荐信范文
2013/12/24 职场文书
幼儿园小班教师寄语
2014/04/03 职场文书
设计顾问服务计划书
2014/05/04 职场文书
优秀语文教师事迹
2014/05/18 职场文书