利用Python破解验证码实例详解


Posted in Python onDecember 08, 2016

一、前言

本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点:

      Python基本知识

      PIL模块的使用

二、实例详解

安装 pillow(PIL)库:

$ sudo apt-get update

$ sudo apt-get install python-dev

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk

$ sudo pip install pillow

下载实验用的文件:

$ wget http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip
$ unzip python_captcha.zip
$ cd python_captcha

这是我们实验使用的验证码 captcha.gif

利用Python破解验证码实例详解

提取文本图片

在工作目录下新建 crack.py 文件,进行编辑。

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
#(将图片转换为8位像素模式)
im = im.convert("P")

#打印颜色直方图
print im.histogram()

输出:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]

颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。

每个像素点可表现256种颜色,你会发现白点是最多(白色序号255的位置,也就是最后一位,可以看到,有625个白色像素)。红像素在序号200左右,我们可以通过排序,得到有用的颜色。

his = im.histogram()
values = {}

for i in range(256):
 values[i] = his[i]

for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]:
 print j,k

输出:

255 625
212 365
220 186
219 135
169 132
227 116
213 115
234 21
205 18
184 15

我们得到了图片中最多的10种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
im = im.convert("P")
im2 = Image.new("P",im.size,255)


for x in range(im.size[1]):
 for y in range(im.size[0]):
  pix = im.getpixel((y,x))
  if pix == 220 or pix == 227: # these are the numbers to get
   im2.putpixel((y,x),0)

im2.show()

得到的结果:

利用Python破解验证码实例详解

提取单个字符图片

接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:

inletter = False
foundletter=False
start = 0
end = 0

letters = []

for y in range(im2.size[0]): 
 for x in range(im2.size[1]):
  pix = im2.getpixel((y,x))
  if pix != 255:
   inletter = True
 if foundletter == False and inletter == True:
  foundletter = True
  start = y

 if foundletter == True and inletter == False:
  foundletter = False
  end = y
  letters.append((start,end))

 inletter=False
print letters

输出:

[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]

得到每个字符开始和结束的列序号。

import hashlib
import time

count = 0
for letter in letters:
 m = hashlib.md5()
 im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
 m.update("%s%s"%(time.time(),count))
 im3.save("./%s.gif"%(m.hexdigest()))
 count += 1

(接上面的代码)

对图片进行切割,得到每个字符所在的那部分图片。

AI 与向量空间图像识别

在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:

  1. 不需要大量的训练迭代
  2. 不会训练过度
  3. 你可以随时加入/移除错误的数据查看效果
  4. 很容易理解和编写成代码
  5. 提供分级结果,你可以查看最接近的多个匹配
  6. 对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。

当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。

向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:

你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。

用 Python 类实现向量空间:

import math

class VectorCompare:
 #计算矢量大小
 def magnitude(self,concordance):
  total = 0
  for word,count in concordance.iteritems():
   total += count ** 2
  return math.sqrt(total)

 #计算矢量之间的 cos 值
 def relation(self,concordance1, concordance2):
  relevance = 0
  topvalue = 0
  for word, count in concordance1.iteritems():
   if concordance2.has_key(word):
    topvalue += count * concordance2[word]
  return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))

它会比较两个 python 字典类型并输出它们的相似度(用 0~1 的数字表示)

将之前的内容放在一起

还有取大量验证码提取单个字符图片作为训练集合的工作,但只要是有好好读上文的同学就一定知道这些工作要怎么做,在这里就略去了。可以直接使用提供的训练集合来进行下面的操作。

iconset目录下放的是我们的训练集。

最后追加的内容:

#将图片转换为矢量
def buildvector(im):
 d1 = {}
 count = 0
 for i in im.getdata():
  d1[count] = i
  count += 1
 return d1

v = VectorCompare()

iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']

#加载训练集
imageset = []
for letter in iconset:
 for img in os.listdir('./iconset/%s/'%(letter)):
  temp = []
  if img != "Thumbs.db" and img != ".DS_Store":
   temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))
  imageset.append({letter:temp})


count = 0
#对验证码图片进行切割
for letter in letters:
 m = hashlib.md5()
 im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))

 guess = []

 #将切割得到的验证码小片段与每个训练片段进行比较
 for image in imageset:
  for x,y in image.iteritems():
   if len(y) != 0:
    guess.append( ( v.relation(y[0],buildvector(im3)),x) )

 guess.sort(reverse=True)
 print "",guess[0]
 count += 1

得到结果

一切准备就绪,运行我们的代码试试:

python crack.py

输出

(0.96376811594202894, '7')
(0.96234028545977002, 's')
(0.9286884286888929, '9')
(0.98350370609844473, 't')
(0.96751165072506273, '9')
(0.96989711688772628, 'j')

是正解,干得漂亮。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
浅析python 内置字符串处理函数的使用方法
Jun 11 Python
python安装numpy&安装matplotlib& scipy的教程
Nov 02 Python
python合并已经存在的sheet数据到新sheet的方法
Dec 11 Python
Django框架验证码用法实例分析
May 10 Python
安装docker-compose的两种最简方法
Jul 30 Python
python实现简单银行管理系统
Oct 25 Python
python爬虫爬取监控教务系统的思路详解
Jan 08 Python
详解python 降级到3.6终极解决方案
Feb 06 Python
Python 使用 environs 库定义环境变量的方法
Feb 25 Python
python实现扑克牌交互式界面发牌程序
Apr 22 Python
基于SpringBoot构造器注入循环依赖及解决方式
Apr 26 Python
微软开源最强Python自动化神器Playwright(不用写一行代码)
Jan 05 Python
详解使用python crontab设置linux定时任务
Dec 08 #Python
Python 正则表达式入门(中级篇)
Dec 07 #Python
Python 正则表达式入门(初级篇)
Dec 07 #Python
Python标准库06之子进程 (subprocess包) 详解
Dec 07 #Python
利用 Monkey 命令操作屏幕快速滑动
Dec 07 #Python
Python深入06——python的内存管理详解
Dec 07 #Python
Python制作钉钉加密/解密工具
Dec 07 #Python
You might like
PHP使用内置dir类实现目录遍历删除
2015/03/31 PHP
WordPress特定文章对搜索引擎隐藏或只允许搜索引擎查看
2015/12/31 PHP
PHP模拟http请求的方法详解
2016/11/09 PHP
PHP中大括号'{}'用法实例总结
2017/02/08 PHP
JavaScript实现动态增加文件域表单
2009/02/12 Javascript
js将iframe中控件的值传到主页面控件中的实现方法
2013/03/11 Javascript
Javascript高级技巧分享
2014/02/25 Javascript
跟我学Nodejs(二)--- Node.js事件模块
2014/05/21 NodeJs
jquery实现LED广告牌旋转系统图片切换效果代码分享
2015/08/26 Javascript
点击按钮出现60秒倒计时的简单js代码(推荐)
2016/06/07 Javascript
JavaScript中removeChild 方法开发示例代码
2016/08/15 Javascript
无阻塞加载js,防止因js加载不了影响页面显示的问题
2016/12/18 Javascript
js 中rewrap-ajax.js插件实例代码
2017/10/20 Javascript
微信小程序实现全国机场索引列表
2018/01/31 Javascript
解决vue中对象属性改变视图不更新的问题
2018/02/23 Javascript
Vue中Quill富文本编辑器的使用教程
2018/09/21 Javascript
vue-cli 首屏加载优化问题
2018/11/06 Javascript
简单了解three.js 着色器材质
2020/08/03 Javascript
Python比较文件夹比另一同名文件夹多出的文件并复制出来的方法
2015/03/05 Python
Python聚类算法之基本K均值实例详解
2015/11/20 Python
学习python 之编写简单乘法运算题
2016/02/27 Python
用Python写冒泡排序代码
2016/04/12 Python
Python Django 封装分页成通用的模块详解
2019/08/21 Python
DJango的创建和使用详解(默认数据库sqlite3)
2019/11/18 Python
python 利用已有Ner模型进行数据清洗合并代码
2019/12/24 Python
django使用JWT保存用户登录信息
2020/04/22 Python
深入理解css中vertical-align属性
2017/04/18 HTML / CSS
canvas绘图按照contain或者cover方式适配并居中显示
2019/02/18 HTML / CSS
请用Python写一个获取用户输入数字,并根据数字大小输出不同信息的脚本
2014/05/20 面试题
优秀干部获奖感言
2014/01/31 职场文书
黄金搭档广告词
2014/03/21 职场文书
医院党员公开承诺书
2014/08/30 职场文书
董事长岗位职责
2015/02/13 职场文书
MySQL 如何设计统计数据表
2021/06/15 MySQL
JPA 通过Specification如何实现复杂查询
2021/11/23 Java/Android
Nginx虚拟主机的配置步骤过程全解
2022/03/31 Servers