利用Python破解验证码实例详解


Posted in Python onDecember 08, 2016

一、前言

本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点:

      Python基本知识

      PIL模块的使用

二、实例详解

安装 pillow(PIL)库:

$ sudo apt-get update

$ sudo apt-get install python-dev

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk

$ sudo pip install pillow

下载实验用的文件:

$ wget http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip
$ unzip python_captcha.zip
$ cd python_captcha

这是我们实验使用的验证码 captcha.gif

利用Python破解验证码实例详解

提取文本图片

在工作目录下新建 crack.py 文件,进行编辑。

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
#(将图片转换为8位像素模式)
im = im.convert("P")

#打印颜色直方图
print im.histogram()

输出:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]

颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。

每个像素点可表现256种颜色,你会发现白点是最多(白色序号255的位置,也就是最后一位,可以看到,有625个白色像素)。红像素在序号200左右,我们可以通过排序,得到有用的颜色。

his = im.histogram()
values = {}

for i in range(256):
 values[i] = his[i]

for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]:
 print j,k

输出:

255 625
212 365
220 186
219 135
169 132
227 116
213 115
234 21
205 18
184 15

我们得到了图片中最多的10种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
im = im.convert("P")
im2 = Image.new("P",im.size,255)


for x in range(im.size[1]):
 for y in range(im.size[0]):
  pix = im.getpixel((y,x))
  if pix == 220 or pix == 227: # these are the numbers to get
   im2.putpixel((y,x),0)

im2.show()

得到的结果:

利用Python破解验证码实例详解

提取单个字符图片

接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:

inletter = False
foundletter=False
start = 0
end = 0

letters = []

for y in range(im2.size[0]): 
 for x in range(im2.size[1]):
  pix = im2.getpixel((y,x))
  if pix != 255:
   inletter = True
 if foundletter == False and inletter == True:
  foundletter = True
  start = y

 if foundletter == True and inletter == False:
  foundletter = False
  end = y
  letters.append((start,end))

 inletter=False
print letters

输出:

[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]

得到每个字符开始和结束的列序号。

import hashlib
import time

count = 0
for letter in letters:
 m = hashlib.md5()
 im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
 m.update("%s%s"%(time.time(),count))
 im3.save("./%s.gif"%(m.hexdigest()))
 count += 1

(接上面的代码)

对图片进行切割,得到每个字符所在的那部分图片。

AI 与向量空间图像识别

在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:

  1. 不需要大量的训练迭代
  2. 不会训练过度
  3. 你可以随时加入/移除错误的数据查看效果
  4. 很容易理解和编写成代码
  5. 提供分级结果,你可以查看最接近的多个匹配
  6. 对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。

当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。

向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:

你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。

用 Python 类实现向量空间:

import math

class VectorCompare:
 #计算矢量大小
 def magnitude(self,concordance):
  total = 0
  for word,count in concordance.iteritems():
   total += count ** 2
  return math.sqrt(total)

 #计算矢量之间的 cos 值
 def relation(self,concordance1, concordance2):
  relevance = 0
  topvalue = 0
  for word, count in concordance1.iteritems():
   if concordance2.has_key(word):
    topvalue += count * concordance2[word]
  return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))

它会比较两个 python 字典类型并输出它们的相似度(用 0~1 的数字表示)

将之前的内容放在一起

还有取大量验证码提取单个字符图片作为训练集合的工作,但只要是有好好读上文的同学就一定知道这些工作要怎么做,在这里就略去了。可以直接使用提供的训练集合来进行下面的操作。

iconset目录下放的是我们的训练集。

最后追加的内容:

#将图片转换为矢量
def buildvector(im):
 d1 = {}
 count = 0
 for i in im.getdata():
  d1[count] = i
  count += 1
 return d1

v = VectorCompare()

iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']

#加载训练集
imageset = []
for letter in iconset:
 for img in os.listdir('./iconset/%s/'%(letter)):
  temp = []
  if img != "Thumbs.db" and img != ".DS_Store":
   temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))
  imageset.append({letter:temp})


count = 0
#对验证码图片进行切割
for letter in letters:
 m = hashlib.md5()
 im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))

 guess = []

 #将切割得到的验证码小片段与每个训练片段进行比较
 for image in imageset:
  for x,y in image.iteritems():
   if len(y) != 0:
    guess.append( ( v.relation(y[0],buildvector(im3)),x) )

 guess.sort(reverse=True)
 print "",guess[0]
 count += 1

得到结果

一切准备就绪,运行我们的代码试试:

python crack.py

输出

(0.96376811594202894, '7')
(0.96234028545977002, 's')
(0.9286884286888929, '9')
(0.98350370609844473, 't')
(0.96751165072506273, '9')
(0.96989711688772628, 'j')

是正解,干得漂亮。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

Python 相关文章推荐
详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别
Jun 23 Python
Python中的__slots__示例详解
Jul 06 Python
Python实现在tkinter中使用matplotlib绘制图形的方法示例
Jan 18 Python
Python使用numpy实现BP神经网络
Mar 10 Python
python如何拆分含有多种分隔符的字符串
Mar 20 Python
Python实现的求解最大公约数算法示例
May 03 Python
Pandas之ReIndex重新索引的实现
Jun 25 Python
Python如何用filter函数筛选数据
Mar 05 Python
PyTorch中torch.tensor与torch.Tensor的区别详解
May 18 Python
python matplotlib库的基本使用
Sep 23 Python
python给list排序的简单方法
Dec 10 Python
Python Matplotlib绘制动画的代码详解
May 30 Python
详解使用python crontab设置linux定时任务
Dec 08 #Python
Python 正则表达式入门(中级篇)
Dec 07 #Python
Python 正则表达式入门(初级篇)
Dec 07 #Python
Python标准库06之子进程 (subprocess包) 详解
Dec 07 #Python
利用 Monkey 命令操作屏幕快速滑动
Dec 07 #Python
Python深入06——python的内存管理详解
Dec 07 #Python
Python制作钉钉加密/解密工具
Dec 07 #Python
You might like
php UTF-8、Unicode和BOM问题
2010/05/18 PHP
php数据库配置文件一般做法分享
2012/07/07 PHP
laravel 5异常错误:FatalErrorException in Handler.php line 38的解决
2017/10/12 PHP
javascript 验证日期的函数
2010/03/18 Javascript
Extjs中DisplayField的日期或者数字格式化扩展
2010/09/03 Javascript
JavaScript Memoization 让函数也有记忆功能
2011/10/27 Javascript
JQuery判断子iframe何时加载完成解决方案
2013/08/20 Javascript
JS拖拽组件学习使用
2016/01/19 Javascript
javascript表单事件处理方法详解
2016/05/15 Javascript
javascript防篡改对象实例详解
2017/04/10 Javascript
ionic3实战教程之随机布局瀑布流的实现方法
2017/12/28 Javascript
vue-cli监听组件加载完成的方法
2018/09/07 Javascript
javascript判断一个变量是数组还是对象
2019/04/10 Javascript
微信小程序跨页面数据传递事件响应实现过程解析
2019/12/19 Javascript
python之Socket网络编程详解
2016/09/29 Python
python实现给微信公众号发送消息的方法
2017/06/30 Python
python寻找list中最大值、最小值并返回其所在位置的方法
2018/06/27 Python
python实现微信小程序用户登录、模板推送
2019/08/28 Python
python实现输入的数据在地图上生成热力图效果
2019/12/06 Python
JBL英国官网:JBL UK
2018/07/04 全球购物
HolidayLettings英国:预订最好的度假公寓、别墅和自助式住宿
2019/08/27 全球购物
台湾三立电视电商平台:电电购
2019/09/09 全球购物
用JAVA SOCKET编程,读服务器几个字符,再写入本地显示
2012/11/25 面试题
化学相关工作求职信
2013/10/02 职场文书
质检部职责
2013/12/28 职场文书
中学优秀班主任事迹材料
2014/05/01 职场文书
给学校建议书范文
2014/05/13 职场文书
社会公德演讲稿
2014/05/20 职场文书
化工工艺设计求职信
2014/06/25 职场文书
员工工作自我评价
2014/09/26 职场文书
设备收款委托书范本
2014/10/02 职场文书
化工见习报告范文
2014/10/31 职场文书
小学生运动会广播
2015/08/19 职场文书
2016大一新生军训感言
2015/12/08 职场文书
高中班主任工作总结(范文)
2019/08/20 职场文书
JavaScript实现栈结构详细过程
2021/12/06 Javascript