python实现数据分析与建模


Posted in Python onJuly 11, 2019

前言

首先我们做数据分析,想要得出最科学,最真实的结论,必须要有好的数据。而实际上我们一般面对的的都是复杂,多变的数据,所以必须要有强大的数据处理能力,接下来,我从我们面临的最真实的情况,一步一步教会大家怎么做。

1.数据的读取

(1)读取模块
 Import pandas as pd 
 Import numpy as np
 (2)读取表格的全部数据
 df = pd.read_csv(".data/HR.csv")
 (3)读取你所需要的数据
 sl_s=df["sactisfaction_level"]

2. 数据的处理

2.1.异常值(空值)处理

2.1.1删除

首先,第一步是对空值的处理。

有两种,一种直接删除,另一种指代。

如果数据多,想简单一点,就直接删除,方法都很简单。

首先,建立一个DataFrame表
 1.为了确定是否含有空值:
 df.isnull() #如果含有空值,返回True
 2.删除
 df.dropna() #去掉含空值的行
 如果想要删除某一个属性含空值的行就加入subset参数
 df.dropna(subset=["B"]) #去掉B属性含空值的行
 判断是否有重复的数据:
 df.duplicated(["A"]) #A属性中重复的数据返回True
 删除A属性重复的行
 df.drop_duplicates(["A"])
 df.drop_duplicates(["A"],keep=False) #删除A属性全部重复的行
 df.drop_duplicates(["A"],keep=first) #删除A属性全部重复的行,保留第一个
 df.drop_duplicates(["A"],keep=last) #删除A属性全部重复的行,保留最后一个

2.1.2指代

有些数据非常重要,不能删除,那我们就选择指代,也就是替换

#含空值的数据被替换为“b*”
 df.fillna("b*")
 #E属性中的含空值的数据被替换成该属性的平均值
 df.fillna(df["E"].mean())
 #插值替换
 如果含空值的元素为最后一个,那么空值的数据替换成和上一个数据一样
 如何含空值的元素为中间,那么空值的数据被(上+下)/2代替
 df["E"].interpolate() 
 #3次样条插值 order 参数就是几次样条插值
 df["E"].interpolate(method="spline",order=3)

*函数

(4)异常值分析(含有就返回True) --isnull()
 sl_s.isnull()
 主要表示没有空值
 (5)提取异常值的该属性信息 
 sl_s[sl_s.isnull()]
 (6)提取异常值的表格全部信息
 df[df["sactisfaction_level"].isnull()]
 (7)丢弃异常值 --dropna()
 sl_s=sl_s.dropna()
 注:删除为空的异常值
 可以利用where()把异常数据赋空,然后利用dropna()删除
 (8)填充异常值 --fillna()
 sl_s=sl_s.fillna()
 (9)平均值 --mean()
 sl_s.mean()
 (10)标准差 --std()
 Sl_s.std()
 (11)最大值 --max()
 sl_s.max()
 (12)最小值 --min()
 sl_s.min()
 (13)中位数 --median()
 sl_s.median()
 (14)下四分位数 --quantile(q=0.25)
 sl_s.quantile(q=0.25)
 (15)上四分位数 --quantile(q=0.75)
 sl_s.quantile(q=0.75)
 (16)偏度 --skew()
 sl_s.skew() 
 分析:小于0 是负偏 均值偏小,大部分数是比他的均值大的
 大于 0 稍微有些振偏 
 远大于0, 是极度振偏,均值要比他的大多数值大好多。
 (17)峰度 --kurt()
 sl_s.kurt()
 分析:<0 相比于正态分布,他的趋势相对平缓
 远大于0 说明他的形变是非常大的,所以是不靠谱的
 (18)获得离散化的分布(numpy模块) --histogram()
 np.histogram(sl_s.values,bins = np.arange(0.0,1.1,0.1))
 结果分析:
 [195,1214,532,974,…]
 [0.0,0.1,0.2,0.3,0.4…]
 代表0.0-0.1之间有195个数,0.1-0.2之间有1214个数,以此类推
 分布间隔为0.1

3.利用四分位数来去除异常值

3.1.提取大于1的值
 le_s[le_s>1]
 3.2 去除大于1的异常值
 le_s[le_s<=1]
 3.3 提取正常值(利用四分位数)
 3.3.1 下四分位
 q_low=le_s.quantile(q =0.25)
 3.3.2 上四分位
 q_high=le_s.quantile(q=0.75)
 3.3.3 四分位间距
 q_interval=q_high-q_low
 3.3.4 定义k的值
 K=1.5~3之间
 如果k=1.5,删除的异常值是中度异常
 如果k=3.0,删除的异常值是极度异常
 3.3.5 筛选
 le_s=le_s[le_s<q_high+k*q_interval][le_s>q_low-k*q_interval]
 3.4 数据的个数 --len()
 len(le_s)
 3.5离散分布直方图(numpy模块)
 np.histogram(le_s.values,bins=np.arange(0.0,1.1,0.1))
 3.6回顾数据的平均值,标准差,中位数,最大值,最小值,偏度,峰度,确定数据的正常。

4.静态结构分析

4.1每个值出现的次数 --values_counts()
 np_s.value_counts()
 4.2获取该数据的构成和比例(每个值的频率)
 np_s.value_counts(normalize=True)
 4.3 排序
 np_s.value_counts(normalize=True).sort_index()

5.数据分区间

5.1把数据分成几份 --histogram() 
 np.histogram(amh_s.values,bins=10) 把数据分成10份
 5.2另一种方法 加了区间,计算区间的频数
 (左闭右开的区间)
 Np.histogram(amh_s.values,bins = np.arange(amh_s.min(),amh_s.max()+10,10))
 (左开右闭的区间)
 amh_s.value_counts(bins=np.arange (amh_s.min(),amh_s.max()+10,10))

6.英文异常值数据的处理

6.1 首先,统计该数据的分布频数
 s_s.value_counts()
 6.2确定异常值的名字。
 6.3把异常值赋空(NaN) --where()
 s_s.where(s_s!="name")
 意思是把”name”的数据赋空
 6.4把赋空的异常值删除 --dropna()删除异常值
 s_s.where(s_s!="name").dropna()
 6.5 检查删除异常值的结果
 s_s.where(s_s!="name").dropna().value_counts()

7.对比分析

7.1对表格中空值的行删除
 Df = df.dropna(axis=0,how='any')
 axis =0 ,代表的是行删除
 how=‘any' 代表的是含有部分空值就执行行删除
 how=‘all' 代表的是一行全部是空值执行行删除
 7.2含有条件性的对异常值的删除
 df=df[df["last_evaluation"]<=1] [df["salary"]!="name"][df["department" ]!="sale"]
 7.3分组(比如:把同一部门的人分为一组) --groupby()
 df.groupby("department")
 7.4对分组后的组取均值
 df.groupby("department").mean()
 7.5 取部分数据(切片) --loc()
 df.loc[:,["last_evaluation","department"]] .groupby("department")
 7.6 取部分数据求平均
 df.loc[:,["last_evaluation","department"]] .groupby("department").mean()
 7.7 取部分数据求极差 --apply()
 df.loc[:,["average_monthly_hours" ,"department"]].groupby ("department")[ "average_monthly_hours"]. apply(lambda x:x.max()-x.min())

总结

以上所述是小编给大家介绍的python实现数据分析与建模 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python实现发送和获取手机短信验证码
Jan 15 Python
Python编程使用*解包和itertools.product()求笛卡尔积的方法
Dec 18 Python
详解Django+Uwsgi+Nginx的生产环境部署
Jun 25 Python
Python爬取qq空间说说的实例代码
Aug 17 Python
一行python实现树形结构的方法
Aug 09 Python
Python 读取 YUV(NV12) 视频文件实例
Dec 09 Python
Django通用类视图实现忘记密码重置密码功能示例
Dec 17 Python
在tensorflow中实现屏蔽输出的log信息
Feb 04 Python
简单了解python shutil模块原理及使用方法
Apr 28 Python
Python简单实现词云图代码及步骤解析
Jun 04 Python
Python3爬虫中Splash的知识总结
Jul 10 Python
vscode+PyQt5安装详解步骤
Aug 12 Python
新手如何发布Python项目开源包过程详解
Jul 11 #Python
让Python脚本暂停执行的几种方法(小结)
Jul 11 #Python
python在openstreetmap地图上绘制路线图的实现
Jul 11 #Python
Python使用pyautocad+openpyxl处理cad文件示例
Jul 11 #Python
python实现微信自动回复机器人功能
Jul 11 #Python
Python基于Opencv来快速实现人脸识别过程详解(完整版)
Jul 11 #Python
python 利用浏览器 Cookie 模拟登录的用户访问知乎的方法
Jul 11 #Python
You might like
用PHP和ACCESS写聊天室(六)
2006/10/09 PHP
PHP操作XML作为数据库的类
2010/12/19 PHP
php获取微信共享收货地址的方法
2017/12/21 PHP
在页面上点击任一链接时触发一个事件的代码
2007/04/07 Javascript
javascript模拟select,jselect的方法实现
2012/11/08 Javascript
jquery模拟alert的弹窗插件
2015/07/31 Javascript
初步使用bootstrap快速创建页面
2016/03/03 Javascript
BootStrap Progressbar 实现大文件上传的进度条的实例代码
2016/06/27 Javascript
Vue 过渡(动画)transition组件案例详解
2017/01/22 Javascript
JavaScript解析JSON格式数据的方法示例
2017/01/24 Javascript
Node+Express+MongoDB实现登录注册功能实例
2017/04/23 Javascript
简单谈谈vue的过渡动画(推荐)
2017/10/11 Javascript
详释JavaScript执行环境与执行栈
2019/04/02 Javascript
初试vue-cli使用HBuilderx打包app的坑
2019/07/17 Javascript
jQuery事件模型默认行为执行顺序及trigger()与 triggerHandler()比较实例分析
2020/04/30 jQuery
[49:28]VP vs Optic 2018国际邀请赛小组赛BO2 第二场 8.16
2018/08/17 DOTA
Python爬取APP下载链接的实现方法
2016/09/30 Python
Python基于回溯法子集树模板实现图的遍历功能示例
2017/09/05 Python
Django使用httpresponse返回用户头像实例代码
2018/01/26 Python
浅析Python 3 字符串中的 STR 和 Bytes 有什么区别
2018/10/14 Python
利用python循环创建多个文件的方法
2018/10/25 Python
利用python实现冒泡排序算法实例代码
2019/12/01 Python
美国网上眼镜商城:Zenni Optical
2016/11/20 全球购物
尼克松手表官网:Nixon手表
2019/03/17 全球购物
煤矿班组长的职责
2013/12/25 职场文书
销售辞职报告范文
2014/01/12 职场文书
父亲的菜园教学反思
2014/02/13 职场文书
国际贸易毕业生求职信范文
2014/02/21 职场文书
灰雀教学反思
2014/04/28 职场文书
小学生我的梦想演讲稿
2014/08/21 职场文书
委托证明书
2014/09/17 职场文书
委托培训协议书
2014/11/17 职场文书
幼儿园新学期开学寄语
2015/05/27 职场文书
钓鱼岛事件感想
2015/08/11 职场文书
解决Go gorm踩过的坑
2021/04/30 Golang
PostgreSQL出现死锁该如何解决
2022/05/30 PostgreSQL