python实现数据分析与建模


Posted in Python onJuly 11, 2019

前言

首先我们做数据分析,想要得出最科学,最真实的结论,必须要有好的数据。而实际上我们一般面对的的都是复杂,多变的数据,所以必须要有强大的数据处理能力,接下来,我从我们面临的最真实的情况,一步一步教会大家怎么做。

1.数据的读取

(1)读取模块
 Import pandas as pd 
 Import numpy as np
 (2)读取表格的全部数据
 df = pd.read_csv(".data/HR.csv")
 (3)读取你所需要的数据
 sl_s=df["sactisfaction_level"]

2. 数据的处理

2.1.异常值(空值)处理

2.1.1删除

首先,第一步是对空值的处理。

有两种,一种直接删除,另一种指代。

如果数据多,想简单一点,就直接删除,方法都很简单。

首先,建立一个DataFrame表
 1.为了确定是否含有空值:
 df.isnull() #如果含有空值,返回True
 2.删除
 df.dropna() #去掉含空值的行
 如果想要删除某一个属性含空值的行就加入subset参数
 df.dropna(subset=["B"]) #去掉B属性含空值的行
 判断是否有重复的数据:
 df.duplicated(["A"]) #A属性中重复的数据返回True
 删除A属性重复的行
 df.drop_duplicates(["A"])
 df.drop_duplicates(["A"],keep=False) #删除A属性全部重复的行
 df.drop_duplicates(["A"],keep=first) #删除A属性全部重复的行,保留第一个
 df.drop_duplicates(["A"],keep=last) #删除A属性全部重复的行,保留最后一个

2.1.2指代

有些数据非常重要,不能删除,那我们就选择指代,也就是替换

#含空值的数据被替换为“b*”
 df.fillna("b*")
 #E属性中的含空值的数据被替换成该属性的平均值
 df.fillna(df["E"].mean())
 #插值替换
 如果含空值的元素为最后一个,那么空值的数据替换成和上一个数据一样
 如何含空值的元素为中间,那么空值的数据被(上+下)/2代替
 df["E"].interpolate() 
 #3次样条插值 order 参数就是几次样条插值
 df["E"].interpolate(method="spline",order=3)

*函数

(4)异常值分析(含有就返回True) --isnull()
 sl_s.isnull()
 主要表示没有空值
 (5)提取异常值的该属性信息 
 sl_s[sl_s.isnull()]
 (6)提取异常值的表格全部信息
 df[df["sactisfaction_level"].isnull()]
 (7)丢弃异常值 --dropna()
 sl_s=sl_s.dropna()
 注:删除为空的异常值
 可以利用where()把异常数据赋空,然后利用dropna()删除
 (8)填充异常值 --fillna()
 sl_s=sl_s.fillna()
 (9)平均值 --mean()
 sl_s.mean()
 (10)标准差 --std()
 Sl_s.std()
 (11)最大值 --max()
 sl_s.max()
 (12)最小值 --min()
 sl_s.min()
 (13)中位数 --median()
 sl_s.median()
 (14)下四分位数 --quantile(q=0.25)
 sl_s.quantile(q=0.25)
 (15)上四分位数 --quantile(q=0.75)
 sl_s.quantile(q=0.75)
 (16)偏度 --skew()
 sl_s.skew() 
 分析:小于0 是负偏 均值偏小,大部分数是比他的均值大的
 大于 0 稍微有些振偏 
 远大于0, 是极度振偏,均值要比他的大多数值大好多。
 (17)峰度 --kurt()
 sl_s.kurt()
 分析:<0 相比于正态分布,他的趋势相对平缓
 远大于0 说明他的形变是非常大的,所以是不靠谱的
 (18)获得离散化的分布(numpy模块) --histogram()
 np.histogram(sl_s.values,bins = np.arange(0.0,1.1,0.1))
 结果分析:
 [195,1214,532,974,…]
 [0.0,0.1,0.2,0.3,0.4…]
 代表0.0-0.1之间有195个数,0.1-0.2之间有1214个数,以此类推
 分布间隔为0.1

3.利用四分位数来去除异常值

3.1.提取大于1的值
 le_s[le_s>1]
 3.2 去除大于1的异常值
 le_s[le_s<=1]
 3.3 提取正常值(利用四分位数)
 3.3.1 下四分位
 q_low=le_s.quantile(q =0.25)
 3.3.2 上四分位
 q_high=le_s.quantile(q=0.75)
 3.3.3 四分位间距
 q_interval=q_high-q_low
 3.3.4 定义k的值
 K=1.5~3之间
 如果k=1.5,删除的异常值是中度异常
 如果k=3.0,删除的异常值是极度异常
 3.3.5 筛选
 le_s=le_s[le_s<q_high+k*q_interval][le_s>q_low-k*q_interval]
 3.4 数据的个数 --len()
 len(le_s)
 3.5离散分布直方图(numpy模块)
 np.histogram(le_s.values,bins=np.arange(0.0,1.1,0.1))
 3.6回顾数据的平均值,标准差,中位数,最大值,最小值,偏度,峰度,确定数据的正常。

4.静态结构分析

4.1每个值出现的次数 --values_counts()
 np_s.value_counts()
 4.2获取该数据的构成和比例(每个值的频率)
 np_s.value_counts(normalize=True)
 4.3 排序
 np_s.value_counts(normalize=True).sort_index()

5.数据分区间

5.1把数据分成几份 --histogram() 
 np.histogram(amh_s.values,bins=10) 把数据分成10份
 5.2另一种方法 加了区间,计算区间的频数
 (左闭右开的区间)
 Np.histogram(amh_s.values,bins = np.arange(amh_s.min(),amh_s.max()+10,10))
 (左开右闭的区间)
 amh_s.value_counts(bins=np.arange (amh_s.min(),amh_s.max()+10,10))

6.英文异常值数据的处理

6.1 首先,统计该数据的分布频数
 s_s.value_counts()
 6.2确定异常值的名字。
 6.3把异常值赋空(NaN) --where()
 s_s.where(s_s!="name")
 意思是把”name”的数据赋空
 6.4把赋空的异常值删除 --dropna()删除异常值
 s_s.where(s_s!="name").dropna()
 6.5 检查删除异常值的结果
 s_s.where(s_s!="name").dropna().value_counts()

7.对比分析

7.1对表格中空值的行删除
 Df = df.dropna(axis=0,how='any')
 axis =0 ,代表的是行删除
 how=‘any' 代表的是含有部分空值就执行行删除
 how=‘all' 代表的是一行全部是空值执行行删除
 7.2含有条件性的对异常值的删除
 df=df[df["last_evaluation"]<=1] [df["salary"]!="name"][df["department" ]!="sale"]
 7.3分组(比如:把同一部门的人分为一组) --groupby()
 df.groupby("department")
 7.4对分组后的组取均值
 df.groupby("department").mean()
 7.5 取部分数据(切片) --loc()
 df.loc[:,["last_evaluation","department"]] .groupby("department")
 7.6 取部分数据求平均
 df.loc[:,["last_evaluation","department"]] .groupby("department").mean()
 7.7 取部分数据求极差 --apply()
 df.loc[:,["average_monthly_hours" ,"department"]].groupby ("department")[ "average_monthly_hours"]. apply(lambda x:x.max()-x.min())

总结

以上所述是小编给大家介绍的python实现数据分析与建模 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python中处理字符串之isalpha()方法的使用
May 18 Python
Python、PyCharm安装及使用方法(Mac版)详解
Apr 28 Python
Jupyter安装nbextensions,启动提示没有nbextensions库
Apr 23 Python
Python 数据处理库 pandas 入门教程基本操作
Apr 19 Python
解决Spyder中图片显示太小的问题
Apr 27 Python
详解Python的数据库操作(pymysql)
Apr 04 Python
Python 安装第三方库 pip install 安装慢安装不上的解决办法
Jun 18 Python
解决django model修改添加字段报错的问题
Nov 18 Python
将自己的数据集制作成TFRecord格式教程
Feb 17 Python
Pycharm新手使用教程(图文详解)
Sep 17 Python
使用Selenium实现微博爬虫(预登录、展开全文、翻页)
Apr 13 Python
基于PyQt5制作一个群发邮件工具
Apr 08 Python
新手如何发布Python项目开源包过程详解
Jul 11 #Python
让Python脚本暂停执行的几种方法(小结)
Jul 11 #Python
python在openstreetmap地图上绘制路线图的实现
Jul 11 #Python
Python使用pyautocad+openpyxl处理cad文件示例
Jul 11 #Python
python实现微信自动回复机器人功能
Jul 11 #Python
Python基于Opencv来快速实现人脸识别过程详解(完整版)
Jul 11 #Python
python 利用浏览器 Cookie 模拟登录的用户访问知乎的方法
Jul 11 #Python
You might like
PHP实现转盘抽奖算法分享
2020/04/15 PHP
JavaScript格式化数字的函数代码
2010/11/30 Javascript
jquery form 加载数据示例
2014/04/21 Javascript
基于jQuery实现表单提交验证
2014/11/24 Javascript
jquery-tips悬浮提示插件分享
2015/07/31 Javascript
jQuery中的ajax async同步和异步详解
2015/09/29 Javascript
基于JS实现弹出一个隐藏的div窗口body页面变成灰色并且不可被编辑
2016/12/14 Javascript
jQuery插件echarts实现的多折线图效果示例【附demo源码下载】
2017/03/04 Javascript
微信小程序 setData的使用方法详解
2017/04/20 Javascript
js制作简单的音乐播放器的示例代码
2017/08/28 Javascript
基于javascript中的typeof和类型判断(详解)
2017/10/27 Javascript
微信小程序 上传头像的实例详解
2017/10/27 Javascript
React学习笔记之高阶组件应用
2018/06/02 Javascript
谈谈JavaScript中super(props)的重要性
2019/02/12 Javascript
Vue-cli3简单使用(图文步骤)
2019/04/30 Javascript
ES6 Object方法扩展的应用实例分析
2019/06/25 Javascript
微信小程序 弹窗输入组件的实现解析
2019/08/12 Javascript
Python中的数据对象持久化存储模块pickle的使用示例
2016/03/03 Python
Python数据结构与算法之二叉树结构定义与遍历方法详解
2017/12/12 Python
matplotlib绘图实例演示标记路径
2018/01/23 Python
基于wxPython的GUI实现输入对话框(1)
2019/02/27 Python
python爬虫 批量下载zabbix文档代码实例
2019/08/21 Python
Python随机数函数代码实例解析
2020/02/09 Python
django 前端页面如何实现显示前N条数据
2020/03/16 Python
利用pyecharts读取csv并进行数据统计可视化的实现
2020/04/17 Python
Tensorflow全局设置可见GPU编号操作
2020/06/30 Python
Python容器类型公共方法总结
2020/08/19 Python
pip已经安装好第三方库但pycharm中import时还是标红的解决方案
2020/10/09 Python
Pytest测试框架基本使用方法详解
2020/11/25 Python
韩都衣舍天猫官方旗舰店:天猫女装销售总冠军
2017/10/10 全球购物
Raffaello Network西班牙:意大利拉斐尔时尚购物网
2019/03/12 全球购物
主键(Primary Key)约束和唯一性(UNIQUE)约束的区别
2013/05/29 面试题
中学生演讲稿
2014/04/26 职场文书
汉字听写大会观后感
2015/06/12 职场文书
Python自动化测试PO模型封装过程详解
2021/06/22 Python
关于redisson缓存序列化几枚大坑说明
2021/08/04 Redis