Python基于Opencv来快速实现人脸识别过程详解(完整版)


Posted in Python onJuly 11, 2019

前言

随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界。

首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验:

Python基于Opencv来快速实现人脸识别过程详解(完整版)

两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循“slabel”命名规则,但后面处理起来比较麻烦,因为目前opencv接受的人脸识别标签为整数,那我们就直接用整数命名吧:

Python基于Opencv来快速实现人脸识别过程详解(完整版)

为了方便,我们每个人用20张照片来训练,0代表黄家驹,1代表黄家强:

Python基于Opencv来快速实现人脸识别过程详解(完整版)

开始啦:

1.检测人脸

这应该是最基本的,给我们一张图片,我们要先检测出人脸的区域,然后才能
进行操作,opencv已经内置了很多分类检测器,我们这次用haar:

def detect_face(img):
 #将测试图像转换为灰度图像,因为opencv人脸检测器需要灰度图像
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 #加载OpenCV人脸检测分类器Haar
 face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
 #检测多尺度图像,返回值是一张脸部区域信息的列表(x,y,宽,高)
 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5)
 # 如果未检测到面部,则返回原始图像
 if (len(faces) == 0):
 return None, None
 #目前假设只有一张脸,xy为左上角坐标,wh为矩形的宽高
 (x, y, w, h) = faces[0]
 #返回图像的正面部分
 return gray[y:y + w, x:x + h], faces[0]

2.有了数据集和检测人脸的功能后,我们就可以进行预训练了

最后返回所有训练图片的人脸检测信息和标签:

# 该函数将读取所有的训练图像,从每个图像检测人脸并将返回两个相同大小的列表,分别为脸部信息和标签
def prepare_training_data(data_folder_path):
 # 获取数据文件夹中的目录(每个主题的一个目录)
 dirs = os.listdir(data_folder_path)
 # 两个列表分别保存所有的脸部和标签
 faces = []
 labels = []
 # 浏览每个目录并访问其中的图像
 for dir_name in dirs:
 # dir_name(str类型)即标签
 label = int(dir_name)
 # 建立包含当前主题主题图像的目录路径
 subject_dir_path = data_folder_path + "/" + dir_name
 # 获取给定主题目录内的图像名称
 subject_images_names = os.listdir(subject_dir_path)
 # 浏览每张图片并检测脸部,然后将脸部信息添加到脸部列表faces[]
 for image_name in subject_images_names:
 # 建立图像路径
 image_path = subject_dir_path + "/" + image_name
 # 读取图像
 image = cv2.imread(image_path)
 # 显示图像0.1s
 cv2.imshow("Training on image...", image)
 cv2.waitKey(100)
 # 检测脸部
 face, rect = detect_face(image)
 # 我们忽略未检测到的脸部
 if face is not None:
 #将脸添加到脸部列表并添加相应的标签
 faces.append(face)
 labels.append(label)
 cv2.waitKey(1)
 cv2.destroyAllWindows()
 #最终返回值为人脸和标签列表
 return faces, labels

3.有了脸部信息和对应标签后,我们就可以使用opencv自带的识别器来进行训练了

#调用prepare_training_data()函数
faces, labels = prepare_training_data("training_data")
#创建LBPH识别器并开始训练,当然也可以选择Eigen或者Fisher识别器
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(labels))

4.训练完毕后就可以进行预测了

在这之前我们可以设定一下预测的格式,包括用矩形框框出人脸并标出其名字,当然最后别忘了建立标签与真实姓名直接的映射表:

#根据给定的(x,y)坐标和宽度高度在图像上绘制矩形
def draw_rectangle(img, rect):
 (x, y, w, h) = rect
 cv2.rectangle(img, (x, y), (x + w, y + h), (128, 128, 0), 2)
# 根据给定的(x,y)坐标标识出人名
def draw_text(img, text, x, y):
 cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (128, 128, 0), 2)
#建立标签与人名的映射列表(标签只能为整数)
subjects = ["jiaju", "jiaqiang"]

5.现在就可以定义我们的预测函数了:

# 此函数识别传递的图像中的人物并在检测到的脸部周围绘制一个矩形及其名称
def predict(test_img):
 #生成图像的副本,这样就能保留原始图像
 img = test_img.copy()
 #检测人脸
 face, rect = detect_face(img)
 #预测人脸
 label = face_recognizer.predict(face)
 # 获取由人脸识别器返回的相应标签的名称
 label_text = subjects[label[0]]
 # 在检测到的脸部周围画一个矩形
 draw_rectangle(img, rect)
 # 标出预测的名字
 draw_text(img, label_text, rect[0], rect[1] - 5)
 #返回预测的图像
 return img

6.最后使用我们test_data中的图片进行预测并显示最终效果:

#加载测试图像
test_img1 = cv2.imread("test_data/test1.jpg")
test_img2 = cv2.imread("test_data/test2.jpg")
#执行预测
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
#显示两个图像
cv2.imshow(subjects[0], predicted_img1)
cv2.imshow(subjects[1], predicted_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

来看看识别的结果:

Python基于Opencv来快速实现人脸识别过程详解(完整版)

这就是人脸识别最基本的流程,后续还会进一步的研究,下一篇我们将讨论本次实验的一些细节和注意事项,算是对本篇的一次挖掘和总结吧。

最后附上完整代码:

# # -*- coding:utf-8 -*-
import cv2
import os
import numpy as np
# 检测人脸
def detect_face(img):
 #将测试图像转换为灰度图像,因为opencv人脸检测器需要灰度图像
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 #加载OpenCV人脸检测分类器Haar
 face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
 #检测多尺度图像,返回值是一张脸部区域信息的列表(x,y,宽,高)
 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5)
 # 如果未检测到面部,则返回原始图像
 if (len(faces) == 0):
 return None, None
 #目前假设只有一张脸,xy为左上角坐标,wh为矩形的宽高
 (x, y, w, h) = faces[0]
 #返回图像的正面部分
 return gray[y:y + w, x:x + h], faces[0]
# 该函数将读取所有的训练图像,从每个图像检测人脸并将返回两个相同大小的列表,分别为脸部信息和标签
def prepare_training_data(data_folder_path):
 # 获取数据文件夹中的目录(每个主题的一个目录)
 dirs = os.listdir(data_folder_path)
 # 两个列表分别保存所有的脸部和标签
 faces = []
 labels = []
 # 浏览每个目录并访问其中的图像
 for dir_name in dirs:
 # dir_name(str类型)即标签
 label = int(dir_name)
 # 建立包含当前主题主题图像的目录路径
 subject_dir_path = data_folder_path + "/" + dir_name
 # 获取给定主题目录内的图像名称
 subject_images_names = os.listdir(subject_dir_path)
 # 浏览每张图片并检测脸部,然后将脸部信息添加到脸部列表faces[]
 for image_name in subject_images_names:
 # 建立图像路径
 image_path = subject_dir_path + "/" + image_name
 # 读取图像
 image = cv2.imread(image_path)
 # 显示图像0.1s
 cv2.imshow("Training on image...", image)
 cv2.waitKey(100)
 # 检测脸部
 face, rect = detect_face(image)
 # 我们忽略未检测到的脸部
 if face is not None:
 #将脸添加到脸部列表并添加相应的标签
 faces.append(face)
 labels.append(label)
 cv2.waitKey(1)
 cv2.destroyAllWindows()
 #最终返回值为人脸和标签列表
 return faces, labels
#调用prepare_training_data()函数
faces, labels = prepare_training_data("training_data")
#创建LBPH识别器并开始训练,当然也可以选择Eigen或者Fisher识别器
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(labels))
#根据给定的(x,y)坐标和宽度高度在图像上绘制矩形
def draw_rectangle(img, rect):
 (x, y, w, h) = rect
 cv2.rectangle(img, (x, y), (x + w, y + h), (128, 128, 0), 2)
# 根据给定的(x,y)坐标标识出人名
def draw_text(img, text, x, y):
 cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (128, 128, 0), 2)
#建立标签与人名的映射列表(标签只能为整数)
subjects = ["jiaju", "jiaqiang"]
# 此函数识别传递的图像中的人物并在检测到的脸部周围绘制一个矩形及其名称
def predict(test_img):
 #生成图像的副本,这样就能保留原始图像
 img = test_img.copy()
 #检测人脸
 face, rect = detect_face(img)
 #预测人脸
 label = face_recognizer.predict(face)
 # 获取由人脸识别器返回的相应标签的名称
 label_text = subjects[label[0]]
 # 在检测到的脸部周围画一个矩形
 draw_rectangle(img, rect)
 # 标出预测的名字
 draw_text(img, label_text, rect[0], rect[1] - 5)
 #返回预测的图像
 return img
#加载测试图像
test_img1 = cv2.imread("test_data/test1.jpg")
test_img2 = cv2.imread("test_data/test2.jpg")
#执行预测
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
#显示两个图像
cv2.imshow(subjects[0], predicted_img1)
cv2.imshow(subjects[1], predicted_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python模拟登陆Tom邮箱示例分享
Jan 13 Python
Python模拟登陆实现代码
Jun 14 Python
Python输入二维数组方法
Apr 13 Python
python调用摄像头显示图像的实例
Aug 03 Python
Python使用Flask-SQLAlchemy连接数据库操作示例
Aug 31 Python
利用python提取wav文件的mfcc方法
Jan 09 Python
pymongo中group by的操作方法教程
Mar 22 Python
Python 正则表达式 re.match/re.search/re.sub的使用解析
Jul 22 Python
Python 私有化操作实例分析
Nov 21 Python
python 代码运行时间获取方式详解
Sep 18 Python
Python更改pip镜像源的方法示例
Dec 01 Python
python数字图像处理之图像自动阈值分割示例
Jun 28 Python
python 利用浏览器 Cookie 模拟登录的用户访问知乎的方法
Jul 11 #Python
PowerBI和Python关于数据分析的对比
Jul 11 #Python
pow在python中的含义及用法
Jul 11 #Python
Python简单处理坐标排序问题示例
Jul 11 #Python
如何使用Python自动控制windows桌面
Jul 11 #Python
python字典嵌套字典的情况下找到某个key的value详解
Jul 10 #Python
如何安装并使用conda指令管理python环境
Jul 10 #Python
You might like
php对图像的各种处理函数代码小结
2013/07/08 PHP
Zend Framework教程之Zend_Layout布局助手详解
2016/03/04 PHP
php+ajax实现带进度条的上传图片功能【附demo源码下载】
2016/09/14 PHP
PHP中使用OpenSSL生成证书及加密解密
2017/02/05 PHP
PHP实现json_decode不转义中文的方法
2017/05/20 PHP
简单实现php上传文件功能
2017/09/21 PHP
Yii框架常见缓存应用实例小结
2019/09/09 PHP
ExtJS 2.0实用简明教程 之获得ExtJS
2009/04/29 Javascript
30个最好的jQuery 灯箱插件分享
2011/04/25 Javascript
JavaScript操纵窗口的方法小结
2013/06/28 Javascript
JavaScript在IE和FF下的兼容性问题
2014/05/19 Javascript
Node.js事件循环(Event Loop)和线程池详解
2015/01/28 Javascript
jQuery validate插件实现ajax验证重复的2种方法
2016/01/22 Javascript
利用JS屏蔽页面中的Enter按键提交表单的方法
2016/11/25 Javascript
JS中Select下拉列表类(支持输入模糊查询)功能
2017/01/17 Javascript
原生js实现类似fullpage的单页/全屏滚动
2017/01/22 Javascript
深入理解 JavaScript 中的 JSON
2017/04/06 Javascript
如何在基于vue-cli的项目自定义打包环境
2018/11/10 Javascript
JS+canvas画布实现炫酷的旋转星空效果示例
2019/02/13 Javascript
详解微信小程序网络请求接口封装实例
2019/05/02 Javascript
[03:04]2018年度DOTA2玩家最喜爱的主播-完美盛典
2018/12/16 DOTA
深入解析Python中函数的参数与作用域
2016/03/20 Python
详解使用python绘制混淆矩阵(confusion_matrix)
2019/07/14 Python
python实现人像动漫化的示例代码
2020/05/17 Python
AmazeUI 面板的实现示例
2020/08/17 HTML / CSS
金牌葡萄酒俱乐部:Gold Medal Wine Club
2017/11/02 全球购物
英国儿童鞋和靴子:Start-Rite
2019/05/06 全球购物
飞利浦西班牙官方网站:Philips西班牙
2020/02/17 全球购物
英国奢侈品牌时尚购物平台:Farfetch(支持中文)
2020/02/18 全球购物
行政部工作岗位职责范本
2014/03/05 职场文书
毕业大学生自荐信
2014/06/17 职场文书
银行授权委托书格式
2014/10/10 职场文书
见义勇为事迹材料
2014/12/24 职场文书
表扬信格式模板
2015/05/05 职场文书
使用Redis做预定库存缓存功能
2022/04/02 Redis
Python探索生命起源 matplotlib细胞自动机动画演示
2022/04/21 Python