pandas中对文本类型数据的处理小结


Posted in Python onNovember 01, 2021
目录

下面看下pandas中字符串类处理函数吧,内容如下所示:

1.英文字母大小写转换及填充

s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe'])
  • 大写转小写: s.str.lower()
  • 小写转大写:s.str.upper()
  • 转为新闻标题形式:s.str.title()
  • 首字母大写,其余小写:s.str.capitalize()
  • 将原来的大写和小写,分别转为小写和大写,即大小写互换:s.str.swapcase()
  • 将文字内容用某种字符填充到固定长度,会从两边进行填充:s.str.center(4,'*')
  • 将文字内容用某种字符填充到固定长度,可以设置填充方向(默认为left,可以设置为left,right,both):s.str.pad(width=10, side=‘right', fillchar='-')
  • 将文字内容用某种字符填充到固定长度,会从文字的右方进行填充,即原来的字符串在左边:s.str.ljust(4,'-')
  • 将文字内容用某种字符填充到固定长度,会从文字的左方进行填充,即原来的字符串在右边:s.str.rjust(4,'-')
  • 将文字内容用某种字符按照指定的方向(left,right,both)填充到固定长度: s.str.pad(3,side=‘left',fillchar='*')
  • 在字符串前添加0到指定长度:
  • s = pd.Series(['-1', ‘1', ‘1000', 10, np.nan])
  • s.str.zfill(3)

2.字符串合并与拆分

2.1 多列字符串合并

注意:多列字符串在合并时,推荐使用cat函数,该函数是按照索引进行合并的。

s=pd.DataFrame({'col1':['a', 'b', np.nan, 'd'],'col2':['A', 'B', 'C', 'D']})
# 1.有一个缺失值的行不进行合并
s['col1'].str.cat([s['col2']])
# 2.用固定字符(*)替换缺失值,并进行合并
s['col1'].str.cat([s['col2']],na_rep='*')
# 3.用固定字符(*)替换缺失值,并用分隔符(,)进行合并
s['col1'].str.cat([s['col2']],na_rep='*',sep=',')
# 4.索引不一致的合并
#创建series
s = pd.Series(['a', 'b', np.nan, 'd'])
t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2])
#合并
s.str.cat(t, join='left', na_rep='-')
s.str.cat(t, join='right', na_rep='-')
s.str.cat(t, join='outer', na_rep='-')
s.str.cat(t, join='inner', na_rep='-')

2.2 一列 列表形式的文本合并为一列

s = pd.Series([['lion', 'elephant', 'zebra'], [1.1, 2.2, 3.3], [
              'cat', np.nan, 'dog'], ['cow', 4.5, 'goat'], ['duck', ['swan', 'fish'], 'guppy']])
#以下划线进行拼接
s.str.join('_')

使用前:

pandas中对文本类型数据的处理小结

使用后:

pandas中对文本类型数据的处理小结

2.3 一列字符串与自身合并成为一列

s = pd.Series(['a', 'b', 'c'])
#指定数字
s.str.repeat(repeats=2)
#指定列表
s.str.repeat(repeats=[1, 2, 3])

使用该函数后,效果图分别如下:

pandas中对文本类型数据的处理小结
pandas中对文本类型数据的处理小结

2.4 一列字符串拆分为多列

2.4.1 partition函数

partition函数,会将某列字符串拆分为3列,其中2列为值,1列为分隔符。
有两个参数进行设置,分别为:sep(分隔符,默认为空格),expand(是否生成dataframe,默认为True)

s = pd.Series(['Linda van der Berg', 'George Pitt-Rivers'])
#默认写法,以空格分割,会以第一个分隔符进行拆分
s.str.partition()
#另一写法,会以最后一个分隔符进行拆分
s.str.rpartition()
#以固定符号作为分隔符
s.str.partition('-', expand=False)
#拆分索引
idx = pd.Index(['X 123', 'Y 999'])
idx.str.partition()

2.4.2 split函数

split函数会按照分隔符拆分为多个值。
参数:
pat(分隔符,默认为空格);
n(限制分隔的输出,即查找几个分隔符,默认-1,表示全部);
expend(是否生成dataframe,默认为False)。

s = pd.Series(["this is a regular sentence","https://docs.python.org/3/tutorial/index.html",np.nan])
#1.默认按照空格进行拆分
s.str.split()
#2.按照空格进行拆分,并限制2个分隔符的输出
s.str.split(n=2)
#3.以指定符号拆分,并生成新的dataframe
s.str.split(pat = "/",expend=True)
#4.使用正则表达式来进行拆分,并生成新的dataframe
s = pd.Series(["1+1=2"])
s.str.split(r"\+|=", expand=True)

2.4.3 rsplit函数

如果不设置n的值,rsplit和split效果是相同的。区别是,split是从开始进行限制,rsplit是从末尾进行限制。

s = pd.Series(["this is a regular sentence","https://docs.python.org/3/tutorial/index.html",np.nan])
#区别于split
s.str.rsplit(n=2)

3.字符串统计

 3.1 统计某列字符串中包含某个字符串的个数

s = pd.Series(['dog', '', 5,{'foo' : 'bar'},[2, 3, 5, 7],('one', 'two', 'three')])
s.str.len()

3.2 统计字符串长度

s = pd.Series(['dog', '', 5,{'foo' : 'bar'},[2, 3, 5, 7],('one', 'two', 'three')])
s.str.len()

效果图如下:

pandas中对文本类型数据的处理小结

4.字符串内容查找(包含正则)

 4.1 extract

可通过正则表达式来提取指定内容,小括号内的会生成一列

s = pd.Series(['a1', 'b2', 'c3'])
#按照小括号内的进行提取,生成两列
s.str.extract(r'([ab])(\d)')
#加上问号后,如果有一个匹配不上,还可以继续匹配
s.str.extract(r'([ab])?(\d)')
#可以对生成的新列进行重命名
s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)')
#生成1列
s.str.extract(r'[ab](\d)', expand=True)

4.2 extractall

区别于extract,该函数可以提取所有符合条件的元素

s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
#提取所有符合条件的数字,结果为多重索引1列
s.str.extractall(r"[ab](\d)")
#提取符合条件的数字,并重命名,结果为多重索引1列
s.str.extractall(r"[ab](?P<digit>\d)")
#提取符合条件的a、b和数字,结果为多重索引多列
s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)")
#提取符合条件的a、b和数字,添加问号后,一个匹配不上可以继续向后匹配,结果为多重索引多列
s.str.extractall(r"(?P<letter>[ab])?(?P<digit>\d)")

4.3 find

查询固定字符串在目标字符串中的最小索引。
若需要查询的字符串未出现在目标字符串中,则显示为-1

s = pd.Series(['appoint', 'price', 'sleep','amount'])
s.str.find('p')

显示结果如下:

pandas中对文本类型数据的处理小结

4.4 rfind

查询固定字符串在目标字符串中的最大索引。
若需要查询的字符串未出现在目标字符串中,则显示为-1。

s = pd.Series(['appoint', 'price', 'sleep','amount'])
s.str.rfind('p',start=1)

查询结果如下:

pandas中对文本类型数据的处理小结

4.5 findall

查找系列/索引中所有出现的模式或正则表达式

s = pd.Series(['appoint', 'price', 'sleep','amount'])
s.str.findall(r'[ac]')

显示结果如下:

pandas中对文本类型数据的处理小结

4.6 get

从列表、元组或字符串中的每个元素中提取元素的系列/索引。

s = pd.Series(["String",
               (1, 2, 3),
               ["a", "b", "c"],
               123,
               -456,
               {1: "Hello", "2": "World"}])
s.str.get(1)

效果如下图:

pandas中对文本类型数据的处理小结

4.7 match

确定每个字符串是否与参数中的正则表达式匹配。

s = pd.Series(['appoint', 'price', 'sleep','amount'])
s.str.match('^[ap].*t')

匹配效果图如下:

pandas中对文本类型数据的处理小结

5.字符串逻辑判断

5.1 contains函数

测试模式或正则表达式是否包含在系列或索引的字符串中。
参数:
pat,字符串或正则表达式;
case,是否区分大小写,默认为True,即区分大小写;
flags,是否传递到re模块,默认为0;
na,对缺失值的处理方法,默认为nan;
regex,是否将pat参数当作正则表达式来处理,默认为True。

s = pd.Series(['APpoint', 'Price', 'cap','approve',123])
s.str.contains('ap',case=True,na=False,regex=False)

效果图如下:

pandas中对文本类型数据的处理小结

5.2 endswith函数

测试每个字符串元素的结尾是否与字符串匹配。

s = pd.Series(['APpoint', 'Price', 'cap','approve',123])
s.str.endswith('e')

匹配结果如下:

pandas中对文本类型数据的处理小结

处理nan值

s = pd.Series(['APpoint', 'Price', 'cap','approve',123])
s.str.endswith('e',na=False)

效果如下:

pandas中对文本类型数据的处理小结

5.3 startswith函数

测试每个字符串元素的开头是否与字符串匹配。

s = pd.Series(['APpoint', 'Price', 'cap','approve',123])
s.str.startswith('a',na=False)

匹配如下:

pandas中对文本类型数据的处理小结

5.4 isalnum函数

检查每个字符串中的所有字符是否都是字母数字。

s1 = pd.Series(['one', 'one1', '1', ''])
s1.str.isalnum()

效果如下:

pandas中对文本类型数据的处理小结

5.5 isalpha函数

检查每个字符串中的所有字符是否都是字母。

s1 = pd.Series(['one', 'one1', '1', ''])
s1.str.isalpha()

效果如下:

pandas中对文本类型数据的处理小结

5.6 isdecimal函数

检查每个字符串中的所有字符是否都是十进制的。

s1 = pd.Series(['one', 'one1', '1',''])
s1.str.isdecimal()

效果如下:

pandas中对文本类型数据的处理小结

5.7 isdigit函数

检查每个字符串中的所有字符是否都是数字。

s1 = pd.Series(['one', 'one1', '1',''])
s1.str.isdigit()

效果如下:

pandas中对文本类型数据的处理小结

5.8 islower函数

检查每个字符串中的所有字符是否都是小写。

s1 = pd.Series(['one', 'one1', '1',''])
s1.str.islower()

效果如下:

pandas中对文本类型数据的处理小结

5.9 isnumeric函数

检查每个字符串中的所有字符是否都是数字。

s1 = pd.Series(['one', 'one1', '1','','3.6'])
s1.str.isnumeric()

效果如下:

pandas中对文本类型数据的处理小结

5.10 isspace函数

检查每个字符串中的所有字符是否都是空格。

s1 = pd.Series([' one', '\t\r\n','1', '',' '])
s1.str.isspace()

效果如下:

pandas中对文本类型数据的处理小结

5.11 istitle函数

检查每个字符串中的所有字符是否都是标题形式的大小写。

s1 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', ''])
s1.str.istitle()

效果如下:

pandas中对文本类型数据的处理小结

5.12 isupper函数

检查每个字符串中的所有字符是否都是大写。

s1 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', ''])
s1.str.isupper()

效果如下:

pandas中对文本类型数据的处理小结

5.13 get_dummies函数

按 sep 拆分系列中的每个字符串并返回一个 虚拟/指标变量的dataframe。

s1 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', ''])
s1.str.get_dummies()

效果如下:

pandas中对文本类型数据的处理小结

该函数还可以进行此类匹配,注意输入的形式

s1=pd.Series(['a|b', np.nan, 'a|c'])
s1.str.get_dummies()

效果如下:

pandas中对文本类型数据的处理小结

6.其他

6.1 strip

删除前导和尾随字符。

s1 = pd.Series(['1. Ant.  ', '2. Bee!\n', '3. Cat?\t', np.nan])
s1.str.strip()

效果如下:

pandas中对文本类型数据的处理小结

6.2 lstrip

删除系列/索引中的前导字符。

6.3 rstrip

删除系列/索引中的尾随字符。

到此这篇关于pandas中对于文本类型数据的处理汇总的文章就介绍到这了,更多相关pandas文本类型数据处理内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python ORM框架SQLAlchemy学习笔记之关系映射实例
Jun 10 Python
Python2.x版本中maketrans()方法的使用介绍
May 19 Python
Python中的条件判断语句基础学习教程
Feb 07 Python
Python格式化输出字符串方法小结【%与format】
Oct 29 Python
钉钉群自定义机器人消息Python封装的实例
Feb 20 Python
django框架模型层功能、组成与用法分析
Jul 30 Python
python创建与遍历List二维列表的方法
Aug 16 Python
使用python从三个角度解决josephus问题的方法
Mar 27 Python
使用Python3 poplib模块删除服务器多天前的邮件实现代码
Apr 24 Python
Django中ORM找出内容不为空的数据实例
May 20 Python
python process模块的使用简介
May 14 Python
Python OpenCV 图像平移的实现示例
Jun 04 Python
Python游戏开发实例之graphics实现AI五子棋
Python Django获取URL中的数据详解
Nov 01 #Python
python编程项目中线上问题排查与解决
Nov 01 #Python
python实现层次聚类的方法
Python list列表删除元素的4种方法
Nov 01 #Python
Python面向对象编程之类的概念
Nov 01 #Python
python代码实现扫码关注公众号登录的实战
You might like
PHP常用的文件操作函数经典收藏
2013/04/02 PHP
解析php中array_merge与array+array的区别
2013/06/21 PHP
php中运用http调用的GET和POST方法示例
2014/09/29 PHP
php常用数组array函数实例总结【赋值,拆分,合并,计算,添加,删除,查询,判断,排序】
2016/12/07 PHP
php微信公众号开发之翻页查询
2018/10/20 PHP
简单的php购物车代码
2020/06/05 PHP
BOOM vs RR BO5 第四场 2.14
2021/03/10 DOTA
jQuery的deferred对象使用详解
2011/08/20 Javascript
Google Map V3 绑定气泡窗口(infowindow)Dom事件实现代码
2013/04/26 Javascript
javascript break指定标签打破多层循环示例
2014/01/20 Javascript
为开发者准备的10款最好的jQuery日历插件
2014/02/04 Javascript
JavaScript简单实现鼠标拖动选择功能
2014/03/06 Javascript
JS获取iframe中marginHeight和marginWidth属性的方法
2015/04/01 Javascript
Extjs4.0 ComboBox如何实现三级联动
2016/05/11 Javascript
利用JQuery阻止事件冒泡
2016/12/01 Javascript
js简单实现网页换肤功能
2017/04/07 Javascript
vue 自定义指令自动获取文本框焦点的方法
2018/08/25 Javascript
小程序卡片切换效果组件wxCardSwiper的实现
2020/02/13 Javascript
uniapp实现横向滚动选择日期
2020/10/21 Javascript
通过实例解析js可枚举属性与不可枚举属性
2020/12/02 Javascript
k8s node节点重新加入master集群的实现
2021/02/22 Javascript
[29:10]Ti4 冒泡赛第二天 NEWBEE vs Titan 3
2014/07/15 DOTA
python读取csv文件示例(python操作csv)
2014/03/11 Python
Python的__builtin__模块中的一些要点知识
2015/05/02 Python
Python中的四种交换数值的方法解析
2019/11/18 Python
使用jupyter notebook直接打开.md格式的文件
2020/04/10 Python
Python浮点型(float)运算结果不正确的解决方案
2020/09/22 Python
奥地利顶级内衣丝袜品牌英国站:Wolford英国
2016/08/29 全球购物
国际领先的学术出版商:Springer
2017/01/11 全球购物
nohup的用法
2014/08/10 面试题
怎样在 Applet 中建立自己的菜单(MenuBar/Menu)?
2012/06/20 面试题
高中体育教学反思
2014/01/24 职场文书
企业安全生产责任书
2014/04/14 职场文书
信息技术远程培训心得体会
2016/01/09 职场文书
“爱眼护眼,提前预防近视”倡议书3篇
2019/10/30 职场文书
vue实现同时设置多个倒计时
2021/05/20 Vue.js