python实现层次聚类的方法


Posted in Python onNovember 01, 2021

层次聚类算法

顾名思义,层次聚类就是一层一层的进行聚类,可以由上向下把大的类别(cluster)分割,叫作分裂法;也可以由下向上对小的类别进行聚合,叫作凝聚法;但是一般用的比较多的是由下向上的凝聚方法。

分裂法:

分裂法指的是初始时将所有的样本归为一个类簇,然后依据某种准则进行逐渐的分裂,直到达到某种条件或者达到设定的分类数目。用算法描述:
输入:样本集合D,聚类数目或者某个条件(一般是样本距离的阈值,这样就可不设置聚类数目)
输出:聚类结果

1.将样本集中的所有的样本归为一个类簇;
repeat:
    2.在同一个类簇(计为c)中计算两两样本之间的距离,找出距离最远的两个样本a,b;
    3.将样本a,b分配到不同的类簇c1和c2中;
    4.计算原类簇(c)中剩余的其他样本点和a,b的距离,若是dis(a)<dis(b),则将样本点归到c1中,否则归到c2中;
util: 达到聚类的数目或者达到设定的条件

凝聚法:

凝聚法指的是初始时将每个样本点当做一个类簇,所以原始类簇的大小等于样本点的个数,然后依据某种准则合并这些初始的类簇,直到达到某种条件或者达到设定的分类数目。用算法描述:
输入:样本集合D,聚类数目或者某个条件(一般是样本距离的阈值,这样就可不设置聚类数目)
输出:聚类结果

 1.将样本集中的所有的样本点都当做一个独立的类簇;
   repeat:
        2.计算两两类簇之间的距离(后边会做介绍),找到距离最小的两个类簇c1和c2;
        3.合并类簇c1和c2为一个类簇;
   util: 达到聚类的数目或者达到设定的条件

例图:

python实现层次聚类的方法

欧式距离的计算公式

python实现层次聚类的方法

类簇间距离的计算方法有许多种:
(1)就是取两个类中距离最近的两个样本的距离作为这两个集合的距离,也就是说,最近两个样本之间的距离越小,这两个类之间的相似度就越大
(2)取两个集合中距离最远的两个点的距离作为两个集合的距离
(3)把两个集合中的点两两的距离全部放在一起求一个平均值,相对也能得到合适一点的结果。
e.g.下面是计算组合数据点(A,F)到(B,C)的距离,这里分别计算了(A,F)和(B,C)两两间距离的均值。

python实现层次聚类的方法

(4)取两两距离的中值,与取均值相比更加能够解除个别偏离样本对结果的干扰。
(5)求每个集合的中心点(就是将集合中的所有元素的对应维度相加然后再除以元素个数得到的一个向量),然后用中心点代替集合再去就集合间的距离

实现

接下来以世界银行样本数据集进行简单实现。该数据集以标准格式存储在名为WBClust2013.csv的CSV格式的文件中。其有80行数据和14个变量。数据来源

python实现层次聚类的方法

为了使得结果可视化更加方便,我将最后一栏人口数据删除了。并且在实现层次聚类之后加入PCA降维与原始结果进行对比。

from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np


data = pd.read_csv('data/WBClust2013.csv')
data.pop('Pop')
# data.pop('RuralWater')
# data.pop('CellPhone')
# data.pop('LifeExp')
data = data[:20]
country = list(data['Country'])
data.pop('Country')

# 以下代码为仅使用层次聚类

plt.figure(figsize=(9, 7))
plt.title("original data")
mergings = linkage(data, method='average')
# print(mergings)
dendrogram(mergings, labels=country, leaf_rotation=45, leaf_font_size=8)
plt.show()
Z = linkage(data, method='average')
print(Z)
cluster_assignments = fcluster(Z, t=3.0, criterion='maxclust')
print(cluster_assignments)
for i in range(1, 4):
    print('cluster', i, ':')
    num = 1
    for index, value in enumerate(cluster_assignments):
        if value == i:
            if num % 5 == 0:
                print()
            num += 1
            print(country[index], end='  ')
    print()

# 以下代码为加入PCA进行对比
class myPCA():

    def __init__(self, X, d=2):
        self.X = X
        self.d = d

    def mean_center(self, data):
        """
        去中心化
        :param data: data sets
        :return:
        """
        n, m = data.shape
        for i in range(m):
            aver = np.sum(self.X[:, i])/n
            x = np.tile(aver, (1, n))
            self.X[:, i] = self.X[:, i]-x

    def runPCA(self):

        # 计算协方差矩阵,得到特征值,特征向量
        S = np.dot(self.X.T, self.X)
        S_val, S_victors = np.linalg.eig(S)
        index = np.argsort(-S_val)[0:self.d]
        Y = S_victors[:, index]
        # 得到输出样本集
        Y = np.dot(self.X, Y)
        return Y

# data_for_pca = np.array(data)
# pcaObject=myPCA(data_for_pca,d=2)
# pcaObject.mean_center(data_for_pca)
# res=pcaObject.runPCA()

# plt.figure(figsize=(9, 7))
# plt.title("after pca")
# mergings = linkage(res,method='average')
# print(mergings)
# dendrogram(mergings,labels=country,leaf_rotation=45,leaf_font_size=8)
# plt.show()
# Z = linkage(res, method='average')
# print(Z)
# cluster_assignments = fcluster(Z, t=3.0, criterion='maxclust')
# print(cluster_assignments)
# for i in range(1,4):
#     print('cluster', i, ':')
#     num = 1
#     for index, value in enumerate(cluster_assignments):
#         if value == i:
#             if num % 5 ==0:
#                 print()
#             num+=1
#             print(country[index],end='  ')
#     print()

两次分类结果都是一样的:

cluster 1 :
China  United States  Indonesia  Brazil  
Russian Federation  Japan  Mexico  Philippines  Vietnam  
Egypt, Arab Rep.  Germany  Turkey  Thailand  France  
United Kingdom  
cluster 2 :
India  Pakistan  Nigeria  Bangladesh  
cluster 3 :
Ethiopia

通过树状图对结果进行可视化

原始树状图:

python实现层次聚类的方法

PCA降维后的结果:

python实现层次聚类的方法

到此这篇关于python实现层次聚类的文章就介绍到这了,更多相关python层次聚类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python中有趣在__call__函数
Jun 21 Python
Python处理json字符串转化为字典的简单实现
Jul 07 Python
python 异常处理总结
Oct 18 Python
python+splinter实现12306网站刷票并自动购票流程
Sep 25 Python
Python中最好用的命令行参数解析工具(argparse)
Aug 23 Python
基于python解线性矩阵方程(numpy中的matrix类)
Oct 21 Python
Python OpenCV读取显示视频的方法示例
Feb 20 Python
python 8种必备的gui库
Aug 27 Python
Django如何批量创建Model
Sep 01 Python
python实现录音功能(可随时停止录音)
Oct 26 Python
一篇文章带你搞懂Python类的相关知识
May 20 Python
yolov5返回坐标的方法实例
Mar 17 Python
Python list列表删除元素的4种方法
Nov 01 #Python
Python面向对象编程之类的概念
Nov 01 #Python
python代码实现扫码关注公众号登录的实战
python编程实现清理微信重复缓存文件
Nov 01 #Python
python调用ffmpeg命令行工具便捷操作视频示例实现过程
Nov 01 #Python
Python字典的基础操作
Nov 01 #Python
Python集合的基础操作
Nov 01 #Python
You might like
PHP邮件专题
2006/10/09 PHP
php feof用来识别文件末尾字符的方法
2010/08/01 PHP
PHP+Oracle本地开发环境搭建方法详解
2019/04/01 PHP
使用Firebug对js进行断点调试的图文方法
2011/04/02 Javascript
取得窗口大小 兼容所有浏览器的js代码
2011/08/09 Javascript
Jquery 点击按钮自动高亮实现原理及代码
2014/04/25 Javascript
jQuery实现单击弹出Div层窗口效果(可关闭可拖动)
2015/09/19 Javascript
Javascript中的arguments对象
2016/06/20 Javascript
vuejs动态组件给子组件传递数据的方法详解
2016/09/09 Javascript
js获取当前时间(昨天、今天、明天)
2016/11/23 Javascript
JS实现页面中所有img对象添加onclick事件及新窗口查看图片的方法
2016/12/27 Javascript
浅谈JavaScript的函数及作用域
2016/12/30 Javascript
JS html时钟制作代码分享
2017/03/03 Javascript
easyui简介_动力节点Java学院整理
2017/07/14 Javascript
React-Native左右联动List的示例代码
2017/09/21 Javascript
JavaScript复制内容到剪贴板的两种常用方法
2018/02/27 Javascript
解决vue点击控制单个样式的问题
2018/09/05 Javascript
js canvas画布实现高斯模糊效果
2018/11/27 Javascript
js tab栏切换代码实例解析
2019/09/03 Javascript
解决vue 使用setTimeout,离开当前路由setTimeout未销毁的问题
2020/07/21 Javascript
[49:05]Newbee vs TNC 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
[36:45]TNC vs VGJ.S 2018国际邀请赛小组赛BO2 第二场 8.18
2018/08/19 DOTA
Python 正则表达式实现计算器功能
2017/04/29 Python
python脚本替换指定行实现步骤
2017/07/11 Python
python爬虫headers设置后无效的解决方法
2017/10/21 Python
python发送告警邮件脚本
2018/09/17 Python
Python3 A*寻路算法实现方式
2019/12/24 Python
Python unittest装饰器实现原理及代码
2020/09/08 Python
Numpy ndarray 多维数组对象的使用
2021/02/10 Python
CSS3 icon font完全指南(CSS3 font 会取代icon图标)
2013/01/06 HTML / CSS
应届毕业生求职信范文分享
2013/12/26 职场文书
长辈证婚人证婚词
2014/01/09 职场文书
单位领导证婚词
2014/01/14 职场文书
2014自荐信的写作技巧
2014/01/28 职场文书
销售内勤岗位职责范本
2015/04/13 职场文书
Pygame Event事件模块的详细示例
2021/11/17 Python