Python实现制作销售数据可视化看板详解


Posted in Python onNovember 27, 2021

在数据时代,销售数据分析的重要性已无需赘言。

只有对销售数据的准确分析我们才有可能找准数据变动(增长或下滑)的原因。

然后解决问题、发现新的增长点才会成为可能!

今天就给大家介绍一个用Python制作销售数据大屏的方法。

主要使用Python的Streamlit库、Plotly库、Pandas库进行搭建。

Python实现制作销售数据可视化看板详解

其中Pandas处理数据,Plotly制作可视化图表,Streamlit搭建可视化页面。

对于以上三个库,Streamlit库可能大家会比较陌生,我简单介绍一下。

Streamlit是一个完全免费的开源应用程序框架,它能帮你不用懂得复杂的HTML,CSS等前端技术就能快速做出来一个炫酷的Web页面。

1. 数据

使用的数据是虚构数据,某超市2021年销售订单数据,共有1000条的订单数据。

Python实现制作销售数据可视化看板详解

城市有三个,分别为北京、上海、杭州。顾客类型有两种,为会员和普通。顾客性别为男性和女性。

剩下还包含订单编号、商品类型、单价、数量、总价、日期、时间、支付方式、成本、毛利率、总收入、评分等信息。

通用Pandas的read_excel方法读取数据。

跳过前3行,选取B到R列,1000行数据。

def get_data_from_excel():
    df = pd.read_excel(
        io="supermarkt_sales.xlsx",
        engine="openpyxl",
        sheet_name="Sales",
        skiprows=3,
        usecols="B:R",
        nrows=1000,
    )
    # 添加小时列数据
    df["小时"] = pd.to_datetime(df["时间"], format="%H:%M:%S").dt.hour
    return df

df = get_data_from_excel()
print(df)

成功读取数据,结果如下。

Python实现制作销售数据可视化看板详解

下面便可以来编写页面了。

2. 网页标题和图标

我们都知道当浏览器打开一个网页,会有标题和图标。

Python实现制作销售数据可视化看板详解

所以我们需先设置本次网页的名称、图标、布局等。

这也是使用Streamlit搭建页面,使用的第一个Streamlit命令,并且只能设置一次。

# 设置网页信息 
st.set_page_config(page_title="销售数据大屏", page_icon=":bar_chart:", layout="wide")

其中page_icon参数可以使用表情符号代码来显示图标。

Python实现制作销售数据可视化看板详解

妥妥的表情符号代码大全!

3. 侧边栏和多选框

st.sidebar(侧边栏),每个传递给st.sidebar的元素都会被固定在左边,让用户可以专注于主页中的内容。

multiselect(多选框)是一个交互性的部件,可以通过它进行数据筛选。

# 侧边栏
st.sidebar.header("请在这里筛选:")
city = st.sidebar.multiselect(
    "选择城市:",
    options=df["城市"].unique(),
    default=df["城市"].unique()
)

customer_type = st.sidebar.multiselect(
    "选择顾客类型:",
    options=df["顾客类型"].unique(),
    default=df["顾客类型"].unique(),
)

gender = st.sidebar.multiselect(
    "选择性别:",
    options=df["性别"].unique(),
    default=df["性别"].unique()
)

df_selection = df.query(
    "城市 == @city & 顾客类型 ==@customer_type & 性别 == @gender"
)

结合Pandas的query查询,就能对数据进行过滤。

通过上述代码就搭建成功了,如下图左侧。

Python实现制作销售数据可视化看板详解

点击侧边栏的右上角关闭符号,侧边栏即可隐藏。

网页将会展示主页面。

Python实现制作销售数据可视化看板详解

4. 主页面信息

接下来编写主页面信息,包含主页标题、销售总额、平均评分、平均销售额信息。

和网页的图标一样,通过表情符号代码实现。

# 主页面
st.title(":bar_chart: 销售数据大屏")
st.markdown("##")

# 核心指标, 销售总额、平均评分、星级、平均销售额数据
total_sales = int(df_selection["总价"].sum())
average_rating = round(df_selection["评分"].mean(), 1)
star_rating = ":star:" * int(round(average_rating, 0))
average_sale_by_transaction = round(df_selection["总价"].mean(), 2)


# 3列布局
left_column, middle_column, right_column = st.columns(3)

# 添加相关信息
with left_column:
    st.subheader("销售总额:")
    st.subheader(f"RMB {total_sales:,}")
with middle_column:
    st.subheader("平均评分:")
    st.subheader(f"{average_rating} {star_rating}")
with right_column:
    st.subheader("平均销售额:")
    st.subheader(f"RMB {average_sale_by_transaction}")

# 分隔符
st.markdown("""---""")

完成核心指标数据的处理,并将其进行布局显示。

Python实现制作销售数据可视化看板详解

5. 主页面图表

包含了两个图表,一个是每小时销售额,一个是各类商品销售总额。通过Plotly Express完成图表的绘制。

Plotly Express是一个新的高级Python可视化库,是Plotly.py的高级封装,它为复杂的图表提供了一个简单的语法。

受Seaborn和ggplot2的启发,它专门设计为具有简洁,一致且易于学习的API。只需一次导入,就可以在一个函数调用中创建丰富的交互式绘图。

# 各类商品销售情况(柱状图)
sales_by_product_line = (
    df_selection.groupby(by=["商品类型"]).sum()[["总价"]].sort_values(by="总价")
)
fig_product_sales = px.bar(
    sales_by_product_line,
    x="总价",
    y=sales_by_product_line.index,
    orientation="h",
    title="<b>每种商品销售总额</b>",
    color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
    template="plotly_white",
)
fig_product_sales.update_layout(
    plot_bgcolor="rgba(0,0,0,0)",
    xaxis=(dict(showgrid=False))
)

# 每小时销售情况(柱状图)
sales_by_hour = df_selection.groupby(by=["小时"]).sum()[["总价"]]
print(sales_by_hour.index)
fig_hourly_sales = px.bar(
    sales_by_hour,
    x=sales_by_hour.index,
    y="总价",
    title="<b>每小时销售总额</b>",
    color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
    template="plotly_white",
)
fig_hourly_sales.update_layout(
    xaxis=dict(tickmode="linear"),
    plot_bgcolor="rgba(0,0,0,0)",
    yaxis=(dict(showgrid=False)),
)


left_column, right_column = st.columns(2)
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
right_column.plotly_chart(fig_product_sales, use_container_width=True)

添加数据,设置图表配置,以及网页布局。

得到结果如下。

Python实现制作销售数据可视化看板详解

6. 隐藏部件

当我们通过Streamlit搭建一个界面,默认就会有红线、菜单、结尾的"Make with Streamlit"。

Python实现制作销售数据可视化看板详解

为了美观,这里可以将它们都隐藏掉。

# 隐藏streamlit默认格式信息
hide_st_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            header {visibility: hidden;}
            </style>
            """

st.markdown(hide_st_style, unsafe_allow_html=True)

这样一个可交互的销售数据看板,就完成搭建啦!

# 安装依赖库
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple plotly==4.14.3
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas==1.1.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit==0.86.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple openpyxl==3.0.6

# 运行
streamlit run app.py

安装相关依赖,命令行终端运行程序。 

以上就是Python实现制作销售数据可视化看板详解的详细内容,更多关于Python 数据可视化的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
使用PYTHON创建XML文档
Mar 01 Python
python的id()函数解密过程
Dec 25 Python
让 python 命令行也可以自动补全
Nov 30 Python
使用Python脚本操作MongoDB的教程
Apr 16 Python
Python的Flask框架中配置多个子域名的方法讲解
Jun 07 Python
CentOS 6.X系统下升级Python2.6到Python2.7 的方法
Oct 12 Python
Python 多进程和数据传递的理解
Oct 09 Python
浅谈Python使用Bottle来提供一个简单的web服务
Dec 27 Python
python3实现表白神器
Apr 09 Python
总结Python图形用户界面和游戏开发知识点
May 22 Python
Python大数据之从网页上爬取数据的方法详解
Nov 16 Python
Django+Nginx+uWSGI 定时任务的实现方法
Jan 22 Python
Python 如何利用ffmpeg 处理视频素材
实操Python爬取觅知网素材图片示例
Python函数中apply、map、applymap的区别
Nov 27 #Python
python字符串拼接.join()和拆分.split()详解
Nov 23 #Python
Python装饰器的练习题
Nov 23 #Python
python人工智能human learn绘图可创建机器学习模型
利用Python实现Picgo图床工具
Nov 23 #Python
You might like
编写PHP脚本使WordPress的主题支持Widget侧边栏
2015/12/14 PHP
Linux php 中文乱码的快速解决方法
2016/05/13 PHP
php基于session锁防止阻塞请求的方法分析
2017/08/07 PHP
关于laravel后台模板laravel-admin select框的使用详解
2019/10/03 PHP
有关DOM元素与事件的3个谜题
2010/11/11 Javascript
js里怎么取select标签里的值并修改
2012/12/10 Javascript
jQuery插件boxScroll实现图片轮播特效
2015/07/14 Javascript
JS 动态判断PC和手机浏览器实现代码
2016/09/21 Javascript
用jQuery的AJax实现异步访问、异步加载
2016/11/02 Javascript
jQuery Ajax请求后台数据并在前台接收
2016/12/10 Javascript
js手机号4位显示空格,银行卡每4位显示空格效果
2017/03/23 Javascript
基于vue实现swipe轮播组件实例代码
2017/05/24 Javascript
微信小程序中使用自定义图标(阿里icon)的方法
2018/08/20 Javascript
微信小程序云开发之新手环境配置
2019/05/16 Javascript
vue动态配置模板 'component is'代码
2019/07/04 Javascript
vue动态渲染svg、添加点击事件的实现
2020/03/13 Javascript
解决vue cli4升级sass-loader(v8)后报错问题
2020/07/30 Javascript
JS实现多功能计算器
2020/10/28 Javascript
[01:04:31]DOTA2-DPC中国联赛定级赛 iG vs Magma BO3第二场 1月8日
2021/03/11 DOTA
使用Python发送各种形式的邮件的方法汇总
2015/11/09 Python
win7上python2.7连接mysql数据库的方法
2017/01/14 Python
浅谈python之新式类
2018/08/12 Python
用python拟合等角螺线的实现示例
2019/12/27 Python
tensorflow 获取checkpoint中的变量列表实例
2020/02/11 Python
Python爬虫爬取新闻资讯案例详解
2020/07/14 Python
html5 worker 实例(二) 图片变换效果
2013/06/24 HTML / CSS
Nike香港官网:Nike HK
2019/03/23 全球购物
涉外经济法专业毕业生推荐信
2013/11/24 职场文书
学前班教师的自我鉴定
2013/12/05 职场文书
收银员的岗位职责范本
2014/02/04 职场文书
企业宣传方案
2014/03/04 职场文书
心理学专业求职信
2014/06/16 职场文书
合同和协议有什么区别?
2014/10/08 职场文书
紧急迫降观后感
2015/06/15 职场文书
酒店开业主持词
2015/07/02 职场文书
Python Matplotlib绘制等高线图与渐变色扇形图
2022/04/14 Python