Python中lru_cache的使用和实现详解


Posted in Python onJanuary 25, 2021

在计算机软件领域,缓存(Cache)指的是将部分数据存储在内存中,以便下次能够更快地访问这些数据,这也是一个典型的用空间换时间的例子。一般用于缓存的内存空间是固定的,当有更多的数据需要缓存的时候,需要将已缓存的部分数据清除后再将新的缓存数据放进去。需要清除哪些数据,就涉及到了缓存置换的策略,LRU(Least Recently Used,最近最少使用)是很常见的一个,也是 Python 中提供的缓存置换策略。

下面我们通过一个简单的示例来看 Python 中的 lru_cache 是如何使用的。

def factorial(n):
  print(f"计算 {n} 的阶乘")
  return 1 if n <= 1 else n * factorial(n - 1)

a = factorial(5)
print(f'5! = {a}')
b = factorial(3)
print(f'3! = {b}')

上面的代码中定义了函数 factorial,通过递归的方式计算 n 的阶乘,并且在函数调用的时候打印出 n 的值。然后分别计算 5 和 3 的阶乘,并打印结果。运行上面的代码,输出如下

计算 5 的阶乘
计算 4 的阶乘
计算 3 的阶乘
计算 2 的阶乘
计算 1 的阶乘
5! = 120
计算 3 的阶乘
计算 2 的阶乘
计算 1 的阶乘
3! = 6

可以看到, factorial(3) 的结果在计算 factorial(5) 的时候已经被计算过了,但是后面又被重复计算了。为了避免这种重复计算,我们可以在定义函数 factorial 的时候加上 lru_cache 装饰器,如下所示

import functools
# 注意 lru_cache 后的一对括号,证明这是带参数的装饰器
@functools.lru_cache()
def factorial(n):
  print(f"计算 {n} 的阶乘")
  return 1 if n <= 1 else n * factorial(n - 1)

重新运行代码,输入如下

计算 5 的阶乘
计算 4 的阶乘
计算 3 的阶乘
计算 2 的阶乘
计算 1 的阶乘
5! = 120
3! = 6

可以看到,这次在调用 factorial(3) 的时候没有打印相应的输出,也就是说 factorial(3) 是直接从缓存读取的结果,证明缓存生效了。

被 lru_cache 修饰的函数在被相同参数调用的时候,后续的调用都是直接从缓存读结果,而不用真正执行函数。下面我们深入源码,看看 Python 内部是怎么实现 lru_cache 的。写作时 Python 最新发行版是 3.9,所以这里使用的是Python 3.9 的源码 ,并且保留了源码中的注释。

def lru_cache(maxsize=128, typed=False):
  """Least-recently-used cache decorator.
  If *maxsize* is set to None, the LRU features are disabled and the cache
  can grow without bound.
  If *typed* is True, arguments of different types will be cached separately.
  For example, f(3.0) and f(3) will be treated as distinct calls with
  distinct results.
  Arguments to the cached function must be hashable.
  View the cache statistics named tuple (hits, misses, maxsize, currsize)
  with f.cache_info(). Clear the cache and statistics with f.cache_clear().
  Access the underlying function with f.__wrapped__.
  See: http://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)
  """

  # Users should only access the lru_cache through its public API:
  #    cache_info, cache_clear, and f.__wrapped__
  # The internals of the lru_cache are encapsulated for thread safety and
  # to allow the implementation to change (including a possible C version).
  
  if isinstance(maxsize, int):
    # Negative maxsize is treated as 0
    if maxsize < 0:
      maxsize = 0
  elif callable(maxsize) and isinstance(typed, bool):
    # The user_function was passed in directly via the maxsize argument
    user_function, maxsize = maxsize, 128
    wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
    wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
    return update_wrapper(wrapper, user_function)
  elif maxsize is not None:
    raise TypeError(
      'Expected first argument to be an integer, a callable, or None')
  
  def decorating_function(user_function):
    wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
    wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
    return update_wrapper(wrapper, user_function)
  
  return decorating_function

这段代码中有如下几个关键点

关键字参数

maxsize 表示缓存容量,如果为 None 表示容量不设限, typed 表示是否区分参数类型,注释中也给出了解释,如果 typed == True ,那么 f(3) 和 f(3.0) 会被认为是不同的函数调用。

第 24 行的条件分支

如果 lru_cache 的第一个参数是可调用的,直接返回 wrapper,也就是把 lru_cache 当做不带参数的装饰器,这是 Python 3.8 才有的特性,也就是说在 Python 3.8 及之后的版本中我们可以用下面的方式使用 lru_cache,可能是为了防止程序员在使用 lru_cache 的时候忘记加括号。

import functools
# 注意 lru_cache 后面没有括号,
# 证明这是将其当做不带参数的装饰器
@functools.lru_cache
def factorial(n):
  print(f"计算 {n} 的阶乘")
  return 1 if n <= 1 else n * factorial(n - 1)

注意,Python 3.8 之前的版本运行上面代码会报错:TypeError: Expected maxsize to be an integer or None。

lru_cache 的具体逻辑是在 _lru_cache_wrapper 函数中实现的,还是一样,列出源码,保留注释。

def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
  # Constants shared by all lru cache instances:
  sentinel = object()     # unique object used to signal cache misses
  make_key = _make_key     # build a key from the function arguments
  PREV, NEXT, KEY, RESULT = 0, 1, 2, 3  # names for the link fields

  cache = {}
  hits = misses = 0
  full = False
  cache_get = cache.get  # bound method to lookup a key or return None
  cache_len = cache.__len__ # get cache size without calling len()
  lock = RLock()      # because linkedlist updates aren't threadsafe
  root = []        # root of the circular doubly linked list
  root[:] = [root, root, None, None]   # initialize by pointing to self

  if maxsize == 0:

    def wrapper(*args, **kwds):
      # No caching -- just a statistics update
      nonlocal misses
      misses += 1
      result = user_function(*args, **kwds)
      return result

  elif maxsize is None:

    def wrapper(*args, **kwds):
      # Simple caching without ordering or size limit
      nonlocal hits, misses
      key = make_key(args, kwds, typed)
      result = cache_get(key, sentinel)
      if result is not sentinel:
        hits += 1
        return result
      misses += 1
      result = user_function(*args, **kwds)
      cache[key] = result
      return result

  else:

    def wrapper(*args, **kwds):
      # Size limited caching that tracks accesses by recency
      nonlocal root, hits, misses, full
      key = make_key(args, kwds, typed)
      with lock:
        link = cache_get(key)
        if link is not None:
          # Move the link to the front of the circular queue
          link_prev, link_next, _key, result = link
          link_prev[NEXT] = link_next
          link_next[PREV] = link_prev
          last = root[PREV]
          last[NEXT] = root[PREV] = link
          link[PREV] = last
          link[NEXT] = root
          hits += 1
          return result
        misses += 1
      result = user_function(*args, **kwds)
      with lock:
        if key in cache:
          # Getting here means that this same key was added to the
          # cache while the lock was released. Since the link
          # update is already done, we need only return the
          # computed result and update the count of misses.
          pass
        elif full:
          # Use the old root to store the new key and result.
          oldroot = root
          oldroot[KEY] = key
          oldroot[RESULT] = result
          # Empty the oldest link and make it the new root.
          # Keep a reference to the old key and old result to
          # prevent their ref counts from going to zero during the
          # update. That will prevent potentially arbitrary object
          # clean-up code (i.e. __del__) from running while we're
          # still adjusting the links.
          root = oldroot[NEXT]
          oldkey = root[KEY]
          oldresult = root[RESULT]
          root[KEY] = root[RESULT] = None
          # Now update the cache dictionary.
          del cache[oldkey]
          # Save the potentially reentrant cache[key] assignment
          # for last, after the root and links have been put in
          # a consistent state.
          cache[key] = oldroot
        else:
          # Put result in a new link at the front of the queue.
          last = root[PREV]
          link = [last, root, key, result]
          last[NEXT] = root[PREV] = cache[key] = link
          # Use the cache_len bound method instead of the len() function
          # which could potentially be wrapped in an lru_cache itself.
          full = (cache_len() >= maxsize)
      return result

  def cache_info():
    """Report cache statistics"""
    with lock:
      return _CacheInfo(hits, misses, maxsize, cache_len())

  def cache_clear():
    """Clear the cache and cache statistics"""
    nonlocal hits, misses, full
    with lock:
      cache.clear()
      root[:] = [root, root, None, None]
      hits = misses = 0
      full = False

  wrapper.cache_info = cache_info
  wrapper.cache_clear = cache_clear
  return wrapper

函数开始的地方 2~14 行定义了一些关键变量,

  • hits 和 misses 分别表示缓存命中和没有命中的次数
  • root 双向循环链表的头结点,每个节点保存前向指针、后向指针、key 和 key 对应的 result,其中 key 为 _make_key 函数根据参数结算出来的字符串,result 为被修饰的函数在给定的参数下返回的结果。 注意 ,root 是不保存数据 key 和 result 的。
  • cache 是真正保存缓存数据的地方,类型为 dict。 cache 中的 key 也是 _make_key 函数根据参数结算出来的字符串,value 保存的是 key 对应的双向循环链表中的节点。

接下来根据 maxsize 不同,定义不同的 wrapper 。

  • maxsize == 0 ,其实也就是没有缓存,那么每次函数调用都不会命中,并且没有命中的次数 misses 加 1。
  • maxsize is None ,不限制缓存大小,如果函数调用不命中,将没有命中次数 misses 加 1,否则将命中次数 hits 加 1。
  • 限制缓存的大小,那么需要根据 LRU 算法来更新 cache ,也就是 42~97 行的代码。
    • 如果缓存命中 key,那么将命中节点移到双向循环链表的结尾,并且返回结果(47~58 行)
    • 这里通过字典加双向循环链表的组合数据结构,实现了用 O(1) 的时间复杂度删除给定的节点。
    • 如果没有命中,并且缓存满了,那么需要将最久没有使用的节点(root 的下一个节点)删除,并且将新的节点添加到链表结尾。在实现中有一个优化,直接将当前的 root 的 key 和 result 替换成新的值,将 root 的下一个节点置为新的 root,这样得到的双向循环链表结构跟删除 root 的下一个节点并且将新节点加到链表结尾是一样的,但是避免了删除和添加节点的操作(68~88 行)
    • 如果没有命中,并且缓存没满,那么直接将新节点添加到双向循环链表的结尾( root[PREV] ,这里我认为是结尾,但是代码注释中写的是开头)(89~96 行)

最后给 wrapper 添加两个属性函数 cache_info 和 cache_clear , cache_info 显示当前缓存的命中情况的统计数据, cache_clear 用于清空缓存。对于上面阶乘相关的代码,如果在最后执行 factorial.cache_info() ,会输出

CacheInfo(hits=1, misses=5, maxsize=128, currsize=5)

第一次执行 factorial(5) 的时候都没命中,所以 misses = 5,第二次执行 factorial(3) 的时候,缓存命中,所以 hits = 1。

最后需要说明的是, 对于有多个关键字参数的函数,如果两次调用函数关键字参数传入的顺序不同,会被认为是不同的调用,不会命中缓存。另外,被 lru_cache 装饰的函数不能包含可变类型参数如 list,因为它们不支持 hash。

总结一下,这篇文章首先简介了一下缓存的概念,然后展示了在 Python 中 lru_cache 的使用方法,最后通过源码分析了 Python 中 lru_cache 的实现细节。

到此这篇关于Python中lru_cache的使用和实现详解的文章就介绍到这了,更多相关Python lru_cache 内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现搜索本地文件信息写入文件的方法
Feb 22 Python
浅析Python中的getattr(),setattr(),delattr(),hasattr()
Jun 14 Python
教你用Python脚本快速为iOS10生成图标和截屏
Sep 22 Python
浅谈python迭代器
Nov 08 Python
python的pip安装以及使用教程
Sep 18 Python
浅析PyTorch中nn.Linear的使用
Aug 18 Python
python实现的分析并统计nginx日志数据功能示例
Dec 21 Python
python对XML文件的操作实现代码
Mar 27 Python
浅析python 定时拆分备份 nginx 日志的方法
Apr 27 Python
Django model.py表单设置默认值允许为空的操作
May 19 Python
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
May 25 Python
Python基础之函数嵌套知识总结
May 23 Python
详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库
Jan 24 #Python
Ubuntu20下的Django安装的方法步骤
Jan 24 #Python
selenium+超级鹰实现模拟登录12306
Jan 24 #Python
使用numpngw和matplotlib生成png动画的示例代码
Jan 24 #Python
详解如何修改jupyter notebook的默认目录和默认浏览器
Jan 24 #Python
详解修改Anaconda中的Jupyter Notebook默认工作路径的三种方式
Jan 24 #Python
浅析python字符串前加r、f、u、l 的区别
Jan 24 #Python
You might like
深入探讨:Nginx 502 Bad Gateway错误的解决方法
2013/06/03 PHP
php生成随机颜色方法汇总
2014/12/03 PHP
Yii2.0预定义的别名功能小结
2016/07/04 PHP
PHP7常量数组用法分析
2016/09/26 PHP
DEDE实现转跳属性文档在模板上调用出转跳地址
2016/11/04 PHP
PHP面向对象程序设计模拟一般面向对象语言中的方法重载(overload)示例
2019/06/13 PHP
Javascript 键盘keyCode键码值表
2009/12/24 Javascript
基于jQuery的表格操作插件
2010/04/22 Javascript
简单介绍JavaScript的变量和数据类型
2015/06/03 Javascript
Javascript的表单验证-提交表单
2016/03/18 Javascript
解析jQueryEasyUI的使用
2016/11/22 Javascript
详解jQuery简单的表格应用
2016/12/16 Javascript
canvas实现动态小球重叠效果
2017/02/06 Javascript
详解ES6 export default 和 import语句中的解构赋值
2019/05/28 Javascript
vue中nextTick用法实例
2019/09/11 Javascript
详细解析Python中__init__()方法的高级应用
2015/05/11 Python
小议Python中自定义函数的可变参数的使用及注意点
2016/06/21 Python
详解python的四种内置数据结构
2019/03/19 Python
Python中list的交、并、差集获取方法示例
2019/08/01 Python
TFRecord格式存储数据与队列读取实例
2020/01/21 Python
Python环境搭建过程从安装到Hello World
2021/02/05 Python
香港时尚女装购物网站:ZAFUL
2017/07/19 全球购物
Kate Spade美国官网:纽约新兴时尚品牌,以包包闻名于世
2017/11/09 全球购物
嘻哈珠宝品牌:KRKC&CO
2020/10/19 全球购物
得到Class的三个过程是什么
2012/08/10 面试题
建筑设计师岗位职责
2013/11/18 职场文书
物业管理员岗位职责范文
2013/11/25 职场文书
教育专业自荐书范文
2013/12/17 职场文书
教师申诉制度
2014/01/29 职场文书
班级活动策划书
2014/02/06 职场文书
给校长的建议书
2014/03/12 职场文书
新闻专业毕业生英文求职信
2014/03/19 职场文书
三年级学生评语
2014/04/23 职场文书
《改造我们的学习》心得体会
2014/11/07 职场文书
PHP实现创建以太坊钱包转账等功能
2021/04/21 PHP
python中的None与NULL用法说明
2021/05/25 Python