详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库


Posted in Python onJanuary 24, 2021

获取要爬取的URL

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

爬虫前期工作

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

用Pycharm打开项目开始写爬虫文件

字段文件items

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class NbaprojectItem(scrapy.Item):
  # define the fields for your item here like:
  # name = scrapy.Field()
  # pass
  # 创建字段的固定格式-->scrapy.Field()
  # 英文名
  engName = scrapy.Field()
  # 中文名
  chName = scrapy.Field()
  # 身高
  height = scrapy.Field()
  # 体重
  weight = scrapy.Field()
  # 国家英文名
  contryEn = scrapy.Field()
  # 国家中文名
  contryCh = scrapy.Field()
  # NBA球龄
  experience = scrapy.Field()
  # 球衣号码
  jerseyNo = scrapy.Field()
  # 入选年
  draftYear = scrapy.Field()
  # 队伍英文名
  engTeam = scrapy.Field()
  # 队伍中文名
  chTeam = scrapy.Field()
  # 位置
  position = scrapy.Field()
  # 东南部
  displayConference = scrapy.Field()
  # 分区
  division = scrapy.Field()

爬虫文件

import scrapy
import json
from nbaProject.items import NbaprojectItem

class NbaspiderSpider(scrapy.Spider):
  name = 'nbaSpider'
  allowed_domains = ['nba.com']
  # 第一次爬取的网址,可以写多个网址
  # start_urls = ['http://nba.com/']
  start_urls = ['https://china.nba.com/static/data/league/playerlist.json']
  # 处理网址的response
  def parse(self, response):
    # 因为访问的网站返回的是json格式,首先用第三方包处理json数据
    data = json.loads(response.text)['payload']['players']
    # 以下列表用来存放不同的字段
    # 英文名
    engName = []
    # 中文名
    chName = []
    # 身高
    height = []
    # 体重
    weight = []
    # 国家英文名
    contryEn = []
    # 国家中文名
    contryCh = []
    # NBA球龄
    experience = []
    # 球衣号码
    jerseyNo = []
    # 入选年
    draftYear = []
    # 队伍英文名
    engTeam = []
    # 队伍中文名
    chTeam = []
    # 位置
    position = []
    # 东南部
    displayConference = []
    # 分区
    division = []
    # 计数
    count = 1
    for i in data:
      # 英文名
      engName.append(str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn']))
      # 中文名
      chName.append(str(i['playerProfile']['firstName'] + i['playerProfile']['lastName']))
      # 国家英文名
      contryEn.append(str(i['playerProfile']['countryEn']))
      # 国家中文
      contryCh.append(str(i['playerProfile']['country']))
      # 身高
      height.append(str(i['playerProfile']['height']))
      # 体重
      weight.append(str(i['playerProfile']['weight']))
      # NBA球龄
      experience.append(str(i['playerProfile']['experience']))
      # 球衣号码
      jerseyNo.append(str(i['playerProfile']['jerseyNo']))
      # 入选年
      draftYear.append(str(i['playerProfile']['draftYear']))
      # 队伍英文名
      engTeam.append(str(i['teamProfile']['code']))
      # 队伍中文名
      chTeam.append(str(i['teamProfile']['displayAbbr']))
      # 位置
      position.append(str(i['playerProfile']['position']))
      # 东南部
      displayConference.append(str(i['teamProfile']['displayConference']))
      # 分区
      division.append(str(i['teamProfile']['division']))

      # 创建item字段对象,用来存储信息 这里的item就是对应上面导的NbaprojectItem
      item = NbaprojectItem()
      item['engName'] = str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn'])
      item['chName'] = str(i['playerProfile']['firstName'] + i['playerProfile']['lastName'])
      item['contryEn'] = str(i['playerProfile']['countryEn'])
      item['contryCh'] = str(i['playerProfile']['country'])
      item['height'] = str(i['playerProfile']['height'])
      item['weight'] = str(i['playerProfile']['weight'])
      item['experience'] = str(i['playerProfile']['experience'])
      item['jerseyNo'] = str(i['playerProfile']['jerseyNo'])
      item['draftYear'] = str(i['playerProfile']['draftYear'])
      item['engTeam'] = str(i['teamProfile']['code'])
      item['chTeam'] = str(i['teamProfile']['displayAbbr'])
      item['position'] = str(i['playerProfile']['position'])
      item['displayConference'] = str(i['teamProfile']['displayConference'])
      item['division'] = str(i['teamProfile']['division'])
      # 打印爬取信息
      print("传输了",count,"条字段")
      count += 1
      # 将字段交回给引擎 -> 管道文件
      yield item

配置文件->开启管道文件

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

# Scrapy settings for nbaProject project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#   https://docs.scrapy.org/en/latest/topics/settings.html
#   https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#   https://docs.scrapy.org/en/latest/topics/spider-middleware.html
# ----------不做修改部分---------
BOT_NAME = 'nbaProject'

SPIDER_MODULES = ['nbaProject.spiders']
NEWSPIDER_MODULE = 'nbaProject.spiders'
# ----------不做修改部分---------

# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'nbaProject (+http://www.yourdomain.com)'

# Obey robots.txt rules
# ----------修改部分(可以自行查这是啥东西)---------
# ROBOTSTXT_OBEY = True
# ----------修改部分---------

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#  'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#  'nbaProject.middlewares.NbaprojectSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#  'nbaProject.middlewares.NbaprojectDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#  'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# 开启管道文件
# ----------修改部分---------
ITEM_PIPELINES = {
  'nbaProject.pipelines.NbaprojectPipeline': 300,
}
# ----------修改部分---------
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

管道文件 -> 将字段写进mysql

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter

import pymysql
class NbaprojectPipeline:
	# 初始化函数
  def __init__(self):
    # 连接数据库 注意修改数据库信息
    self.connect = pymysql.connect(host='域名', user='用户名', passwd='密码',
                    db='数据库', port=端口号) 
    # 获取游标
    self.cursor = self.connect.cursor()
    # 创建一个表用于存放item字段的数据
    createTableSql = """
              create table if not exists `nbaPlayer`(
              playerId INT UNSIGNED AUTO_INCREMENT,
              engName varchar(80),
              chName varchar(20),
              height varchar(20),
              weight varchar(20),
              contryEn varchar(50),
              contryCh varchar(20),
              experience int,
              jerseyNo int,
              draftYear int,
              engTeam varchar(50),
              chTeam varchar(50),
              position varchar(50),
              displayConference varchar(50),
              division varchar(50),
              primary key(playerId)
              )charset=utf8;
              """
    # 执行sql语句
    self.cursor.execute(createTableSql)
    self.connect.commit()
    print("完成了创建表的工作")
	#每次yield回来的字段会在这里做处理
  def process_item(self, item, spider):
  	# 打印item增加观赏性
  	print(item)
    # sql语句
    insert_sql = """
    insert into nbaPlayer(
    playerId, engName, 
    chName,height,
    weight,contryEn,
    contryCh,experience,
    jerseyNo,draftYear
    ,engTeam,chTeam,
    position,displayConference,
    division
    ) VALUES (null,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
    """
    # 执行插入数据到数据库操作
    # 参数(sql语句,用item字段里的内容替换sql语句的占位符)
    self.cursor.execute(insert_sql, (item['engName'], item['chName'], item['height'], item['weight']
                     , item['contryEn'], item['contryCh'], item['experience'], item['jerseyNo'],
                     item['draftYear'], item['engTeam'], item['chTeam'], item['position'],
                     item['displayConference'], item['division']))
    # 提交,不进行提交无法保存到数据库
    self.connect.commit()
    print("数据提交成功!")

启动爬虫

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

屏幕上滚动的数据

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

去数据库查看数据

详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

简简单单就把球员数据爬回来啦~

到此这篇关于详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这了,更多相关Scrapy爬虫员数据存放到Mysql内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中使用urllib2获取http请求状态码的代码例子
Jul 07 Python
关于python的bottle框架跨域请求报错问题的处理方法
Mar 19 Python
对Python字符串中的换行符和制表符介绍
May 03 Python
对pandas replace函数的使用方法小结
May 18 Python
python中csv文件的若干读写方法小结
Jul 04 Python
11个Python3字典内置方法大全与示例汇总
May 13 Python
在Python中COM口的调用方法
Jul 03 Python
Django app配置多个数据库代码实例
Dec 17 Python
解决Pytorch训练过程中loss不下降的问题
Jan 02 Python
python实现简单贪吃蛇游戏
Sep 29 Python
pyx文件 生成pyd 文件用于 cython调用的实现
Mar 04 Python
Python3.8官网文档之类的基础语法阅读
Sep 04 Python
Ubuntu20下的Django安装的方法步骤
Jan 24 #Python
selenium+超级鹰实现模拟登录12306
Jan 24 #Python
使用numpngw和matplotlib生成png动画的示例代码
Jan 24 #Python
详解如何修改jupyter notebook的默认目录和默认浏览器
Jan 24 #Python
详解修改Anaconda中的Jupyter Notebook默认工作路径的三种方式
Jan 24 #Python
浅析python字符串前加r、f、u、l 的区别
Jan 24 #Python
python 图像增强算法实现详解
Jan 24 #Python
You might like
浅析PHP编程中10个最常见的错误
2014/08/08 PHP
起点页面传值js,有空研究学习下
2010/01/25 Javascript
YUI模块开发原理详解
2013/11/18 Javascript
jquery全选checkBox功能实现代码(取消全选功能)
2013/12/10 Javascript
一个很有趣3D球状标签云兼容IE8
2014/08/22 Javascript
实用框架(iframe)操作代码
2014/10/23 Javascript
JavaScript获取当前日期是星期几的方法
2015/04/06 Javascript
JQuery显示、隐藏div的几种方法简明总结
2015/04/16 Javascript
移动端H5开发 Turn.js实现很棒的翻书效果
2016/06/20 Javascript
利用JS实现简单的日期选择插件
2017/01/23 Javascript
JS实现利用两个队列表示一个栈的方法
2017/12/13 Javascript
基于node搭建服务器,写接口,调接口,跨域的实例
2018/05/13 Javascript
JS通用方法触发点击事件代码实例
2020/02/17 Javascript
Vue如何跨组件传递Slot的实现
2020/12/14 Vue.js
[01:05:56]2018DOTA2亚洲邀请赛3月29日 小组赛A组 Newbee VS VG
2018/03/30 DOTA
[18:16]sakonoko 2017年卡尔集锦
2018/02/06 DOTA
python制作企业邮箱的爆破脚本
2016/10/05 Python
Python用sndhdr模块识别音频格式详解
2018/01/11 Python
python3.6+opencv3.4实现鼠标交互查看图片像素
2018/02/26 Python
Python如何发布程序的详细教程
2018/10/09 Python
python 2.7 检测一个网页是否能正常访问的方法
2018/12/26 Python
Python 一句话生成字母表的方法
2019/01/02 Python
python中数组和矩阵乘法及使用总结(推荐)
2019/05/18 Python
PyQt5 在label显示的图片中绘制矩形的方法
2019/06/17 Python
Pycharm中Python环境配置常见问题解析
2020/01/16 Python
CSS3 transform的skew属性值图文详解
2014/07/21 HTML / CSS
MYSQL相比于其他数据库有哪些特点
2013/07/19 面试题
四个太阳教学反思
2014/02/01 职场文书
会计师职业生涯规划范文
2014/02/18 职场文书
毕业生就业协议书
2014/04/11 职场文书
酒店仓管员岗位职责
2014/04/28 职场文书
企业趣味活动方案
2014/08/21 职场文书
2015个人年度工作总结范文
2015/05/28 职场文书
新郎父母婚礼答谢词
2015/09/29 职场文书
一行Python命令实现批量加水印
2022/04/07 Python
微信告警的zabbix监控系统 监控整个NGINX集群
2022/04/18 Servers