python 图像增强算法实现详解


Posted in Python onJanuary 24, 2021

使用python编写了共六种图像增强算法:

1)基于直方图均衡化
2)基于拉普拉斯算子
3)基于对数变换
4)基于伽马变换
5)限制对比度自适应直方图均衡化:CLAHE
6)retinex-SSR
7)retinex-MSR其中,6和7属于同一种下的变化。
将每种方法编写成一个函数,封装,可以直接在主函数中调用。
采用同一幅图进行效果对比。

图像增强的效果为:

直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节
拉普拉斯算子可以增强局部的图像对比度
log对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好
伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于相机过曝)情况下的图像增强效果明显
CLAHE和retinex的效果均较好

python代码为:

# 图像增强算法,图像锐化算法
# 1)基于直方图均衡化 2)基于拉普拉斯算子 3)基于对数变换 4)基于伽马变换 5)CLAHE 6)retinex-SSR 7)retinex-MSR
# 其中,基于拉普拉斯算子的图像增强为利用空域卷积运算实现滤波
# 基于同一图像对比增强效果
# 直方图均衡化:对比度较低的图像适合使用直方图均衡化方法来增强图像细节
# 拉普拉斯算子可以增强局部的图像对比度
# log对数变换对于整体对比度偏低并且灰度值偏低的图像增强效果较好
# 伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于相机过曝)情况下的图像增强效果明显

import cv2
import numpy as np
import matplotlib.pyplot as plt


# 直方图均衡增强
def hist(image):
  r, g, b = cv2.split(image)
  r1 = cv2.equalizeHist(r)
  g1 = cv2.equalizeHist(g)
  b1 = cv2.equalizeHist(b)
  image_equal_clo = cv2.merge([r1, g1, b1])
  return image_equal_clo


# 拉普拉斯算子
def laplacian(image):
  kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
  image_lap = cv2.filter2D(image, cv2.CV_8UC3, kernel)
  return image_lap


# 对数变换
def log(image):
  image_log = np.uint8(np.log(np.array(image) + 1))
  cv2.normalize(image_log, image_log, 0, 255, cv2.NORM_MINMAX)
  # 转换成8bit图像显示
  cv2.convertScaleAbs(image_log, image_log)
  return image_log


# 伽马变换
def gamma(image):
  fgamma = 2
  image_gamma = np.uint8(np.power((np.array(image) / 255.0), fgamma) * 255.0)
  cv2.normalize(image_gamma, image_gamma, 0, 255, cv2.NORM_MINMAX)
  cv2.convertScaleAbs(image_gamma, image_gamma)
  return image_gamma


# 限制对比度自适应直方图均衡化CLAHE
def clahe(image):
  b, g, r = cv2.split(image)
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  b = clahe.apply(b)
  g = clahe.apply(g)
  r = clahe.apply(r)
  image_clahe = cv2.merge([b, g, r])
  return image_clahe


def replaceZeroes(data):
  min_nonzero = min(data[np.nonzero(data)])
  data[data == 0] = min_nonzero
  return data


# retinex SSR
def SSR(src_img, size):
  L_blur = cv2.GaussianBlur(src_img, (size, size), 0)
  img = replaceZeroes(src_img)
  L_blur = replaceZeroes(L_blur)

  dst_Img = cv2.log(img/255.0)
  dst_Lblur = cv2.log(L_blur/255.0)
  dst_IxL = cv2.multiply(dst_Img, dst_Lblur)
  log_R = cv2.subtract(dst_Img, dst_IxL)

  dst_R = cv2.normalize(log_R,None, 0, 255, cv2.NORM_MINMAX)
  log_uint8 = cv2.convertScaleAbs(dst_R)
  return log_uint8


def SSR_image(image):
  size = 3
  b_gray, g_gray, r_gray = cv2.split(image)
  b_gray = SSR(b_gray, size)
  g_gray = SSR(g_gray, size)
  r_gray = SSR(r_gray, size)
  result = cv2.merge([b_gray, g_gray, r_gray])
  return result


# retinex MMR
def MSR(img, scales):
  weight = 1 / 3.0
  scales_size = len(scales)
  h, w = img.shape[:2]
  log_R = np.zeros((h, w), dtype=np.float32)

  for i in range(scales_size):
    img = replaceZeroes(img)
    L_blur = cv2.GaussianBlur(img, (scales[i], scales[i]), 0)
    L_blur = replaceZeroes(L_blur)
    dst_Img = cv2.log(img/255.0)
    dst_Lblur = cv2.log(L_blur/255.0)
    dst_Ixl = cv2.multiply(dst_Img, dst_Lblur)
    log_R += weight * cv2.subtract(dst_Img, dst_Ixl)

  dst_R = cv2.normalize(log_R,None, 0, 255, cv2.NORM_MINMAX)
  log_uint8 = cv2.convertScaleAbs(dst_R)
  return log_uint8


def MSR_image(image):
  scales = [15, 101, 301] # [3,5,9]
  b_gray, g_gray, r_gray = cv2.split(image)
  b_gray = MSR(b_gray, scales)
  g_gray = MSR(g_gray, scales)
  r_gray = MSR(r_gray, scales)
  result = cv2.merge([b_gray, g_gray, r_gray])
  return result


if __name__ == "__main__":
  image = cv2.imread("example.jpg")
  image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

  plt.subplot(4, 2, 1)
  plt.imshow(image)
  plt.axis('off')
  plt.title('Offical')

  # 直方图均衡增强
  image_equal_clo = hist(image)

  plt.subplot(4, 2, 2)
  plt.imshow(image_equal_clo)
  plt.axis('off')
  plt.title('equal_enhance')

  # 拉普拉斯算法增强
  image_lap = laplacian(image)

  plt.subplot(4, 2, 3)
  plt.imshow(image_lap)
  plt.axis('off')
  plt.title('laplacian_enhance')

  # LoG对象算法增强
  image_log = log(image)

  plt.subplot(4, 2, 4)
  plt.imshow(image_log)
  plt.axis('off')
  plt.title('log_enhance')

  # 伽马变换
  image_gamma = gamma(image)

  plt.subplot(4, 2, 5)
  plt.imshow(image_gamma)
  plt.axis('off')
  plt.title('gamma_enhance')

  # CLAHE
  image_clahe = clahe(image)

  plt.subplot(4, 2, 6)
  plt.imshow(image_clahe)
  plt.axis('off')
  plt.title('CLAHE')

  # retinex_ssr
  image_ssr = SSR_image(image)

  plt.subplot(4, 2, 7)
  plt.imshow(image_ssr)
  plt.axis('off')
  plt.title('SSR')

  # retinex_msr
  image_msr = MSR_image(image)

  plt.subplot(4, 2, 8)
  plt.imshow(image_msr)
  plt.axis('off')
  plt.title('MSR')

  plt.show()

增强效果如下图所示:

python 图像增强算法实现详解

到此这篇关于python 图像增强算法实现详解的文章就介绍到这了,更多相关python 图像增强算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
零基础写python爬虫之HTTP异常处理
Nov 05 Python
Python找出9个连续的空闲端口
Feb 01 Python
Python自动发邮件脚本
Mar 31 Python
python中字符串类型json操作的注意事项
May 02 Python
详谈pandas中agg函数和apply函数的区别
Apr 20 Python
django 将model转换为字典的方法示例
Oct 16 Python
利用python在大量数据文件下删除某一行的例子
Aug 21 Python
使用python制作一个解压缩软件
Nov 13 Python
python+selenium+Chrome options参数的使用
Mar 18 Python
python设置表格边框的具体方法
Jul 17 Python
Python操作dict时避免出现KeyError的几种解决方法
Sep 20 Python
No module named ‘win32gui‘ 的解决方法(踩坑之旅)
Feb 18 Python
详解用 python-docx 创建浮动图片
Jan 24 #Python
Python爬虫入门教程02之笔趣阁小说爬取
Jan 24 #Python
Python爬虫入门教程01之爬取豆瓣Top电影
Jan 24 #Python
详解python的变量缓存机制
Jan 24 #Python
Python字符串对齐、删除字符串不需要的内容以及格式化打印字符
Jan 23 #Python
利用Python函数实现一个万历表完整示例
Jan 23 #Python
python将YUV420P文件转PNG图片格式的两种方法
Jan 22 #Python
You might like
PHP实现手机归属地查询API接口实现代码
2012/08/27 PHP
浅谈php优化需要注意的地方
2014/11/27 PHP
PHP正则表达式入门教程(推荐)
2016/05/18 PHP
让whoops帮我们告别ThinkPHP6的异常页面
2020/03/02 PHP
Javascript 更新 JavaScript 数组的 uniq 方法
2008/01/23 Javascript
jQuery使用attr()方法同时设置多个属性值用法实例
2015/03/26 Javascript
js闭包实现按秒计数
2015/04/23 Javascript
浅析2种JavaScript继承方式
2015/12/04 Javascript
jQuery中使用animate自定义动画的方法
2016/05/29 Javascript
浅谈JavaScript的内置对象和浏览器对象
2016/06/03 Javascript
jquery实现界面无刷新加载登陆注册
2016/07/30 Javascript
基于jQuery实现照片墙自动播放特效
2017/01/12 Javascript
nodejs操作mysql实现增删改查的实例
2017/05/28 NodeJs
Angular.js组件之input mask对input输入进行格式化详解
2017/07/10 Javascript
微信小程序Flex布局用法深入浅出分析
2019/04/25 Javascript
使用js实现一个简单的滚动条过程解析
2019/09/10 Javascript
ES6对象操作实例详解
2020/05/23 Javascript
python中的五种异常处理机制介绍
2014/09/02 Python
Python中使用Beautiful Soup库的超详细教程
2015/04/30 Python
Python处理XML格式数据的方法详解
2017/03/21 Python
python实现机器人卡牌
2019/10/06 Python
python实现输出一个序列的所有子序列示例
2019/11/18 Python
jupyter notebook中美观显示矩阵实例
2020/04/17 Python
python绘制汉诺塔
2021/03/01 Python
日本必酷网络直营店:Biccamera
2019/03/23 全球购物
ESDlife健康生活易:身体检查预订、搜寻及比较
2019/05/10 全球购物
英国最好的温室之家:Greenhouses Direct
2019/07/13 全球购物
MATCHESFASHION澳大利亚/亚太地区:英国时尚奢侈品电商
2020/01/14 全球购物
与UNIX有关的几个名词
2015/09/17 面试题
建议书标准格式
2014/03/12 职场文书
婚前保证书范文
2015/02/28 职场文书
学历证明范文
2015/06/16 职场文书
2016年社区“我们的节日·中秋节”活动总结
2016/04/05 职场文书
springboot利用redis、Redisson处理并发问题的操作
2021/06/18 Java/Android
Redis之RedisTemplate配置方式(序列和反序列化)
2022/03/13 Redis
python如何读取和存储dict()与.json格式文件
2022/06/25 Python