python 性能提升的几种方法


Posted in Python onJuly 15, 2016

关于python 性能提升的一些方案。

一、函数调用优化(空间跨度,避免访问内存)

 程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度。

1.大数据求和,使用sum

a = range(100000)
%timeit -n 10 sum(a)
10 loops, best of 3: 3.15 ms per loop
%%timeit
  ...: s = 0
  ...: for i in a:
  ...:  s += i
  ...:
100 loops, best of 3: 6.93 ms per loop

2.小数据求和,避免使用sum

%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快
1000 loops, best of 3: 571 ns per loop
%timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低
1000 loops, best of 3: 669 ns per loop

结论:大数据求和sum效率高,小数据求和直接累加效率高。

二、for循环优化之取元素(使用栈或寄存器,避免访问内存)

for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销
  pass

 应尽量避免使用索引。

for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better
  pass

相当于给每一个元素直接赋值。

def force():
 lst = range(4)
 for a1 in [1, 2]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
                      
%%timeit -n 10
for t in force():
  sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]])
10 loops, best of 3: 465 ms per loop
%%timeit -n 10
for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force():
  sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1])
10 loops, best of 3: 360 ms per loop

三、生成器优化(查表代替运算)

def force(start, end): # 用于密码暴力破解程序
  for i in range(start, end):
    now = i
    sublst = []
    for j in range(10):
      sublst.append(i % 10) # 除法运算开销较大,比乘法大
      i //= 10
    sublst.reverse()
    yield(tuple(sublst), now)
def force(): # better
 lst = range(5)
 for a1 in [1]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
r0 = [1, 2] # 可读性与灵活性
r1 = range(10)
r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1
force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
      for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4
      for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)

 四、幂运算优化(pow(x,y,z)) 

def isprime(n):
  if n & 1 == 0:
    return False
  k, q = find_kq(n)
  a = randint(1, n - 1)
  if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍
    return True
  for j in range(k):
    if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n
      return True
  return False

 结论:pow(x,y,z)优于x**y%z.

 五、除法运算优化

In [1]: from random import getrandbits
 
In [2]: x = getrandbits(4096)
 
In [3]: y = getrandbits(2048)
 
In [4]: %timeit -n 10000 q, r = divmod(x, y)
10000 loops, best of 3: 10.7 us per loop
 
In [5]: %timeit -n 10000 q, r = x//y, x % y
10000 loops, best of 3: 21.2 us per loop

 结论:divmod优于//和%。

 六、优化算法时间复杂度  

算法的时间复杂度对程序的执行效率影响最大,在python中可以选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同场景有不同的优化方式,总的来说,一般有分治,分支定界、贪心动态规划等思想。

七、合理使用copy和deepcopy

对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于deepcopy是递归复制的。效率不同:

In [23]: import copy
In [24]: %timeit -n 10 copy.copy(a)
10 loops, best of 3: 606 ns per loop
In [25]: %timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.17 us per loop

 timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。

 关于copy的一个例子:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

 发生的事情是这样的,[[]]是包含一个空列表的只有一个元素的列表,所以[[]] * 3的所有三个元素都是(指向)这个空列表。修改lists的任何元素都修改这个列表。修改效率高。

 八、使用dict或set查找元素

python 字典和集合都是使用hash表来实现(类似c++标准库unordered_map),查找元素的时间复杂度是O(1)。

In [1]: r = range(10**7)
In [2]: s = set(r) # 占用 588MB 内存
In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存
In [4]: %timeit -n 10000 (10**7) - 1 in r
10000 loops, best of 3: 291 ns per loop
In [5]: %timeit -n 10000 (10**7) - 1 in s
10000 loops, best of 3: 121 ns per loop
In [6]: %timeit -n 10000 (10**7) - 1 in d
10000 loops, best of 3: 111 ns per loop

结论:set 的内存占用量最小,dict运行时间最短。

九、合理使用(generator)和yield(节省内存)

In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效
10 loops, best of 3: 933 ns per loop
In [2]: %timeit -n 10 a = [i for i in range(10**7)]
10 loops, best of 3: 916 ms per loop
In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass
10 loops, best of 3: 749 ms per loop
In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass
10 loops, best of 3: 1.05 s per loop

结论:尽量使用生成器去遍历。

以上就是对python 性能提升的一些方案,后续继续补充,需要的可以看下。

Python 相关文章推荐
使用pdb模块调试Python程序实例
Jun 02 Python
Python实现的最近最少使用算法
Jul 10 Python
python 多线程实现检测服务器在线情况
Nov 25 Python
python实现逻辑回归的方法示例
May 02 Python
定制FileField中的上传文件名称实例
Aug 23 Python
django 发送手机验证码的示例代码
Apr 25 Python
python爬虫的数据库连接问题【推荐】
Jun 25 Python
Python父目录、子目录的相互调用方法
Feb 16 Python
Python3批量生成带logo的二维码方法
Jun 24 Python
python 下 CMake 安装配置 OPENCV 4.1.1的方法
Sep 30 Python
使用python接受tgam的脑波数据实例
Apr 09 Python
Python列表如何更新值
May 27 Python
浅谈Python 对象内存占用
Jul 15 #Python
python发送邮件功能实现代码
Jul 15 #Python
Python中列表和元组的使用方法和区别详解
Dec 30 #Python
Python中的变量和作用域详解
Jul 13 #Python
在Python中通过threading模块定义和调用线程的方法
Jul 12 #Python
举例讲解Python编程中对线程锁的使用
Jul 12 #Python
使用Python编写一个最基础的代码解释器的要点解析
Jul 12 #Python
You might like
php 网页游戏开发入门教程一(webgame+design)
2009/10/26 PHP
php多个文件及图片上传实例详解
2014/11/10 PHP
PHP实现指定字段的多维数组排序函数分享
2015/03/09 PHP
PHP实现恶意DDOS攻击避免带宽占用问题方法
2015/05/27 PHP
php微信支付接口开发程序
2016/08/02 PHP
javascript FormatNumber函数实现方法
2008/12/30 Javascript
javascript 处理HTML元素必须避免使用的一种方法
2009/07/30 Javascript
基于jquery的模态div层弹出效果
2010/08/21 Javascript
基于jquery & json的省市区联动代码
2012/06/26 Javascript
JQuery获取样式中的background-color颜色值的问题
2013/08/20 Javascript
jquery ajax 调用失败的原因示例介绍
2013/09/27 Javascript
js实现图片轮播效果
2015/12/19 Javascript
JavaScript实现类似拉勾网的鼠标移入移出效果
2016/10/27 Javascript
利用纯Vue.js构建Bootstrap组件
2016/11/03 Javascript
JavaScript面向对象分层思维全面解析
2016/11/22 Javascript
JavaScript实现的XML与JSON互转功能详解
2017/02/16 Javascript
Angular2 Service实现简单音乐播放器服务
2017/02/24 Javascript
通过fastclick源码分析彻底解决tap“点透”
2017/12/24 Javascript
Element实现表格嵌套、多个表格共用一个表头的方法
2020/05/09 Javascript
解决ant Design中this.props.form.validateFields未执行的问题
2020/10/27 Javascript
查看Python安装路径以及安装包路径小技巧
2015/04/28 Python
Python数组定义方法
2016/04/13 Python
Python求解正态分布置信区间教程
2019/11/20 Python
html5使用window.postMessage进行跨域实现数据交互的一次实战
2021/02/24 HTML / CSS
豆腐の盛田屋官网:日本自然派的豆乳面膜、肥皂、化妆水、乳液等
2016/10/08 全球购物
SmartBuyGlasses英国:购买太阳镜和眼镜
2018/01/29 全球购物
化工专业推荐信范文
2013/11/28 职场文书
医院实习介绍信
2014/01/12 职场文书
物理系毕业生自荐书范文
2014/02/22 职场文书
2014年大学庆元旦迎新年活动方案
2014/03/09 职场文书
网上祭先烈心得体会
2014/09/01 职场文书
2014年班级工作总结
2014/11/14 职场文书
小学生毕业评语
2014/12/26 职场文书
小学生成绩单评语
2014/12/31 职场文书
干部考核工作总结2015
2015/07/24 职场文书
CSS3 制作的悬停缩放特效
2021/04/13 HTML / CSS