python 性能提升的几种方法


Posted in Python onJuly 15, 2016

关于python 性能提升的一些方案。

一、函数调用优化(空间跨度,避免访问内存)

 程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度。

1.大数据求和,使用sum

a = range(100000)
%timeit -n 10 sum(a)
10 loops, best of 3: 3.15 ms per loop
%%timeit
  ...: s = 0
  ...: for i in a:
  ...:  s += i
  ...:
100 loops, best of 3: 6.93 ms per loop

2.小数据求和,避免使用sum

%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快
1000 loops, best of 3: 571 ns per loop
%timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低
1000 loops, best of 3: 669 ns per loop

结论:大数据求和sum效率高,小数据求和直接累加效率高。

二、for循环优化之取元素(使用栈或寄存器,避免访问内存)

for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销
  pass

 应尽量避免使用索引。

for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better
  pass

相当于给每一个元素直接赋值。

def force():
 lst = range(4)
 for a1 in [1, 2]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
                      
%%timeit -n 10
for t in force():
  sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]])
10 loops, best of 3: 465 ms per loop
%%timeit -n 10
for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force():
  sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1])
10 loops, best of 3: 360 ms per loop

三、生成器优化(查表代替运算)

def force(start, end): # 用于密码暴力破解程序
  for i in range(start, end):
    now = i
    sublst = []
    for j in range(10):
      sublst.append(i % 10) # 除法运算开销较大,比乘法大
      i //= 10
    sublst.reverse()
    yield(tuple(sublst), now)
def force(): # better
 lst = range(5)
 for a1 in [1]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
r0 = [1, 2] # 可读性与灵活性
r1 = range(10)
r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1
force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
      for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4
      for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)

 四、幂运算优化(pow(x,y,z)) 

def isprime(n):
  if n & 1 == 0:
    return False
  k, q = find_kq(n)
  a = randint(1, n - 1)
  if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍
    return True
  for j in range(k):
    if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n
      return True
  return False

 结论:pow(x,y,z)优于x**y%z.

 五、除法运算优化

In [1]: from random import getrandbits
 
In [2]: x = getrandbits(4096)
 
In [3]: y = getrandbits(2048)
 
In [4]: %timeit -n 10000 q, r = divmod(x, y)
10000 loops, best of 3: 10.7 us per loop
 
In [5]: %timeit -n 10000 q, r = x//y, x % y
10000 loops, best of 3: 21.2 us per loop

 结论:divmod优于//和%。

 六、优化算法时间复杂度  

算法的时间复杂度对程序的执行效率影响最大,在python中可以选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同场景有不同的优化方式,总的来说,一般有分治,分支定界、贪心动态规划等思想。

七、合理使用copy和deepcopy

对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于deepcopy是递归复制的。效率不同:

In [23]: import copy
In [24]: %timeit -n 10 copy.copy(a)
10 loops, best of 3: 606 ns per loop
In [25]: %timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.17 us per loop

 timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。

 关于copy的一个例子:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

 发生的事情是这样的,[[]]是包含一个空列表的只有一个元素的列表,所以[[]] * 3的所有三个元素都是(指向)这个空列表。修改lists的任何元素都修改这个列表。修改效率高。

 八、使用dict或set查找元素

python 字典和集合都是使用hash表来实现(类似c++标准库unordered_map),查找元素的时间复杂度是O(1)。

In [1]: r = range(10**7)
In [2]: s = set(r) # 占用 588MB 内存
In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存
In [4]: %timeit -n 10000 (10**7) - 1 in r
10000 loops, best of 3: 291 ns per loop
In [5]: %timeit -n 10000 (10**7) - 1 in s
10000 loops, best of 3: 121 ns per loop
In [6]: %timeit -n 10000 (10**7) - 1 in d
10000 loops, best of 3: 111 ns per loop

结论:set 的内存占用量最小,dict运行时间最短。

九、合理使用(generator)和yield(节省内存)

In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效
10 loops, best of 3: 933 ns per loop
In [2]: %timeit -n 10 a = [i for i in range(10**7)]
10 loops, best of 3: 916 ms per loop
In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass
10 loops, best of 3: 749 ms per loop
In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass
10 loops, best of 3: 1.05 s per loop

结论:尽量使用生成器去遍历。

以上就是对python 性能提升的一些方案,后续继续补充,需要的可以看下。

Python 相关文章推荐
Python 初始化多维数组代码
Sep 06 Python
Python判断Abundant Number的方法
Jun 15 Python
Python基于回溯法子集树模板解决m着色问题示例
Sep 07 Python
Python实现基本数据结构中队列的操作方法示例
Dec 04 Python
python3字符串操作总结
Jul 24 Python
python-Web-flask-视图内容和模板知识点西宁街
Aug 23 Python
Django发送邮件功能实例详解
Sep 02 Python
Django对接支付宝实现支付宝充值金币功能示例
Dec 17 Python
python GUI库图形界面开发之PyQt5输入对话框QInputDialog详细使用方法与实例
Feb 27 Python
python中wx模块的具体使用方法
May 15 Python
Python urlopen()参数代码示例解析
Dec 10 Python
详解Open Folder as PyCharm Project怎么添加的方法
Dec 29 Python
浅谈Python 对象内存占用
Jul 15 #Python
python发送邮件功能实现代码
Jul 15 #Python
Python中列表和元组的使用方法和区别详解
Dec 30 #Python
Python中的变量和作用域详解
Jul 13 #Python
在Python中通过threading模块定义和调用线程的方法
Jul 12 #Python
举例讲解Python编程中对线程锁的使用
Jul 12 #Python
使用Python编写一个最基础的代码解释器的要点解析
Jul 12 #Python
You might like
如何限制访问者的ip(PHPBB的代码)
2006/10/09 PHP
php日历制作代码分享
2014/01/20 PHP
php设计模式之代理模式分析【星际争霸游戏案例】
2020/03/23 PHP
响应鼠标变换表格背景或者颜色的代码
2009/03/30 Javascript
在一个js文件里远程调用jquery.js会在ie8下的一个奇怪问题
2010/11/28 Javascript
JavaScript生成GUID的多种算法小结
2013/08/18 Javascript
javascript实时显示当天日期的方法
2015/05/20 Javascript
浅谈javascript中return语句
2015/07/15 Javascript
js中window.open的参数及注意注意事项
2016/07/06 Javascript
通过JS和PHP两种方法判断用户请求时使用的浏览器类型
2016/09/01 Javascript
JS简单实现tab切换效果的多窗口显示功能
2016/09/07 Javascript
20行js代码实现的贪吃蛇小游戏
2017/06/20 Javascript
Angular中自定义Debounce Click指令防止重复点击
2017/07/26 Javascript
vue2.0 路由不显示router-view的解决方法
2018/03/06 Javascript
Vue引入jquery实现平滑滚动到指定位置
2018/05/09 jQuery
Vue内部渲染视图的方法
2019/09/02 Javascript
vue实现员工信息录入功能
2020/06/11 Javascript
Python中Collection的使用小技巧
2014/08/18 Python
Python中不同进制互相转换(二进制、八进制、十进制和十六进制)
2015/04/05 Python
Python中Django框架利用url来控制登录的方法
2015/07/25 Python
Python 内置函数complex详解
2016/10/23 Python
python实现树的深度优先遍历与广度优先遍历详解
2019/10/26 Python
使用celery和Django处理异步任务的流程分析
2020/02/19 Python
pandas之分组groupby()的使用整理与总结
2020/06/18 Python
css3的transition属性详解
2014/12/15 HTML / CSS
Html5饼图绘制实现统计图的方法
2020/08/05 HTML / CSS
大学生求职工作的自我评价
2014/02/13 职场文书
财产保全担保书范文
2014/04/01 职场文书
小学校园之星事迹材料
2014/05/16 职场文书
计算机专业自荐信
2014/05/24 职场文书
群众路线自查自纠工作情况报告
2014/10/28 职场文书
考博导师推荐信范文
2015/03/27 职场文书
党员违纪检讨书
2015/05/05 职场文书
Python List remove()实例用法详解
2021/08/02 Python
单机多实例部署 MySQL8.0.20
2022/05/15 MySQL
MySQL中dd::columns表结构转table过程及应用详解
2022/09/23 MySQL