基于canvas使用贝塞尔曲线平滑拟合折线段的方法


Posted in HTML / CSS onJanuary 10, 2018

写在最前

本次分享一下在canvas中将绘制出来的折线段的棱角“磨平”,也就是通过贝塞尔曲线穿过各个描点来代替原有的折线图。

为什么要平滑拟合折线段

先来看下Echarts下折线图的渲染效果:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

一开始我没注意到其实这个折线段是曲线穿过去的,只认为是单纯的描点绘图,所以起初我实现的“简(丑)易(陋)”版本是这样的:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

不要关注样式,重点就是实现之后才发现看起来人家Echarts的实现描点非常的圆滑,也由此引发了之后的探讨。怎么有规律的画平滑曲线?

效果图

先来看下最终模仿的实现:

因为我也不知道Echarts内部怎么实现的(逃

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

看起来已经非常圆润了,和我们最初的设想十分接近了。再看下曲线是否穿过了描点:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

好的!结果很明显现在来重新看下我们的实现方式。

实现过程

  1. 绘制折线图
  2. 贝塞尔曲线平滑拟合

模拟数据

var data = [Math.random() * 300];
        for (var i = 1; i < 50; i++) { //按照echarts
            data.push(Math.round((Math.random() - 0.5) * 20 + data[i - 1]));
        }
        option = {
            canvas:{
                id: 'canvas'
            },
            series: {
                name: '模拟数据',
                itemStyle: {
                    color: 'rgb(255, 70, 131)'
                },
                areaStyle: {
                    color: 'rgb(255, 158, 68)'
                },
                data: data
            }
        };

绘制折线图

首先初始化一个构造函数来放置需要用到的数据:

function LinearGradient(option) {
    this.canvas = document.getElementById(option.canvas.id)
    this.ctx = this.canvas.getContext('2d')
    this.width = this.canvas.width
    this.height = this.canvas.height
    this.tooltip = option.tooltip
    this.title = option.text
    this.series = option.series //存放模拟数据
}

绘制折线图:

LinearGradient.prototype.draw1 = function() { //折线参考线
    ... 
    //要考虑到canvas中的原点是左上角,
    //所以下面要做一些换算,
    //diff为x,y轴被数据最大值和最小值的取值范围所平分的等份。
    this.series.data.forEach(function(item, index) {
        var x = diffX * index,
            y = Math.floor(self.height - diffY * (item - dataMin))
        self.ctx.lineTo(x, y) //绘制各个数据点
    })
    ...
}

贝塞尔曲线平滑拟合

贝塞尔曲线的关键点在于控制点的选择,这个网站可以动态的展现控制点不同而绘制的不同的曲线。而对于控制点的计算。。作者还是选择了百度一下毕竟数学不好:)。具体算法有兴趣的同学可以深入了解下,现在直接说下计算控制点的结论。

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

上面的公式涉及到四个坐标点,当前点,前一个点以及后两个点,而当坐标值为下图展示的时候绘制出来的曲线如下所示:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

不过会有一个问题就是起始点和最后一个点不能用这个公式,不过那篇文章也给出了边界值的处理办法:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

所以在将折线换成平滑曲线的时候,将边界值以及其他控制点计算好之后代入到贝塞尔函数中就完成了:

//核心实现
this.series.data.forEach(function(item, index) { //找到前一个点到下一个点中间的控制点
    var scale = 0.1 //分别对于ab控制点的一个正数,可以分别自行调整
    var last1X = diffX * (index - 1),
        last1Y = Math.floor(self.height - diffY * (self.series.data[index - 1] - dataMin)),
        //前一个点坐标
        last2X = diffX * (index - 2),
        last2Y = Math.floor(self.height - diffY * (self.series.data[index - 2] - dataMin)),
        //前两个点坐标
        nowX = diffX * (index),
        nowY = Math.floor(self.height - diffY * (self.series.data[index] - dataMin)),
        //当期点坐标
        nextX = diffX * (index + 1),
        nextY = Math.floor(self.height - diffY * (self.series.data[index + 1] - dataMin)),
        //下一个点坐标
        cAx = last1X + (nowX - last2X) * scale,
        cAy = last1Y + (nowY - last2Y) * scale,
        cBx = nowX - (nextX - last1X) * scale,
        cBy = nowY - (nextY - last1Y) * scale 
    if(index === 0) {
        self.ctx.lineTo(nowX, nowY)
        return
    } else if(index ===1) {
        cAx = last1X + (nowX - 0) * scale
        cAy = last1Y + (nowY - self.height) * scale 
    } else if(index === self.series.data.length - 1) {
        cBx = nowX - (nowX - last1X) * scale
        cBy = nowY - (nowY - last1Y) * scale
    } 
        self.ctx.bezierCurveTo(cAx, cAy, cBx, cBy, nowX, nowY);
        //绘制出上一个点到当前点的贝塞尔曲线
    })

由于我每次遍历的点都是当前点,但是文章中给出的公式是计算会知道下一个点的控制点算法,故在代码实现中我将所有点的计算挪前了一位。当index = 0时也就是初始点是不需要曲线绘制的,因为我们绘制的是从前一个点到当前点的曲线,没有到0的曲线需要绘制。从index = 1开始我们就可以正常开始绘制,从0到1的曲线,由于index = 1时是没有在他前面第二个点的故其属于边界值点,也就是需要特殊进行计算,以及最后一个点。其余均按照正常公式算出AB的xy坐标代入贝塞尔函数即可。

最后

源代码见这里

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

HTML / CSS 相关文章推荐
通过CSS3的object-fit来调整图片适配尺寸的技巧简介
Feb 27 HTML / CSS
详解CSS3 rem(设置字体大小) 教程
Nov 21 HTML / CSS
css3 flex实现div内容水平垂直居中的几种方法
Mar 27 HTML / CSS
HTML5: Web 标准最巨大的飞跃
Oct 17 HTML / CSS
详解移动端h5页面根据屏幕适配的四种方案
Apr 15 HTML / CSS
详解HTML5中CSS外观属性
Sep 10 HTML / CSS
一个基于canvas的移动端图片编辑器的实现
Oct 28 HTML / CSS
详解CSS开发过程中的20个快速提升技巧
May 21 HTML / CSS
css背景和边框标签实例详解
May 21 HTML / CSS
Html5大屏数据可视化开发的实现
Jun 11 HTML / CSS
HTML5基础学习之文本标签控制
Mar 25 HTML / CSS
CSS SandBox应用场景及常见问题
Jun 25 HTML / CSS
canvas实现高阶贝塞尔曲线(N阶贝塞尔曲线生成器)
Jan 10 #HTML / CSS
H5混合开发app如何升级的方法
Jan 10 #HTML / CSS
浅谈关于html5中图片抛物线运动的一些心得
Jan 09 #HTML / CSS
详解快速开发基于 HTML5 网络拓扑图应用
Jan 08 #HTML / CSS
浅谈HTML5 Web Worker的使用
Jan 05 #HTML / CSS
详解基于canvas的视频遮罩插件
Jan 04 #HTML / CSS
详解HTML5中的picture元素响应式处理图片
Jan 03 #HTML / CSS
You might like
php 正则表达式小结
2009/08/31 PHP
php利用递归实现删除文件目录的方法
2016/09/23 PHP
实例讲解YII2中多表关联的使用方法
2017/07/21 PHP
PHP实现的AES加密、解密封装类与用法示例
2018/08/02 PHP
jquery 得到当前页面高度和宽度的两个函数
2010/02/21 Javascript
javascript 解决表单仍然提交即使监听处理函数返回false
2010/03/14 Javascript
jQuery为iframe的body添加click事件的实现代码
2011/04/07 Javascript
javascript学习笔记(一) 在html中使用javascript
2012/06/18 Javascript
js处理表格对table进行修饰
2014/05/26 Javascript
JavaScript获取按钮所在form表单id的方法
2015/04/02 Javascript
浅析C/C++,Java,PHP,JavaScript,Json数组、对象赋值时最后一个元素后面是否可以带逗号
2016/03/22 Javascript
深入浅析JavaScript中的scrollTop
2016/07/11 Javascript
浅谈JavaScript 中有关时间对象的方法
2016/08/15 Javascript
AngularJS实现网站换肤实例
2021/02/19 Javascript
BootstrapValidator实现注册校验和登录错误提示效果
2017/03/10 Javascript
ES6新特性之数组、Math和扩展操作符用法示例
2017/04/01 Javascript
详解有关easyUI的拖动操作中droppable,draggable用法例子
2017/06/03 Javascript
JavaScript动态创建二维数组的方法示例
2019/02/01 Javascript
PHP实现基于Redis的MessageQueue队列封装操作示例
2019/02/02 Javascript
jquery添加div实现消息聊天框
2020/02/08 jQuery
JS相册图片抖动放大展示效果的示例代码
2021/01/29 Javascript
Python Socket传输文件示例
2017/01/16 Python
基于随机梯度下降的矩阵分解推荐算法(python)
2018/08/31 Python
在python 中实现运行多条shell命令
2019/01/07 Python
Python3中lambda表达式与函数式编程讲解
2019/01/14 Python
pycharm 批量修改变量名称的方法
2019/08/01 Python
jupyternotebook 撤销删除的操作方式
2020/04/17 Python
CSS3下的渐变文字效果实现示例
2018/03/02 HTML / CSS
小学生自我鉴定
2013/10/12 职场文书
2014年安全生产目标责任书
2014/07/23 职场文书
挂职学习心得体会
2014/09/09 职场文书
2014年绿化工作总结
2014/12/09 职场文书
教师求职自荐信
2015/03/26 职场文书
Canvas三种动态画圆实现方法说明(小结)
2021/04/16 Javascript
mysql字段为NULL索引是否会失效实例详解
2022/05/30 MySQL
MySQL 语句执行顺序举例解析
2022/06/05 MySQL