基于canvas使用贝塞尔曲线平滑拟合折线段的方法


Posted in HTML / CSS onJanuary 10, 2018

写在最前

本次分享一下在canvas中将绘制出来的折线段的棱角“磨平”,也就是通过贝塞尔曲线穿过各个描点来代替原有的折线图。

为什么要平滑拟合折线段

先来看下Echarts下折线图的渲染效果:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

一开始我没注意到其实这个折线段是曲线穿过去的,只认为是单纯的描点绘图,所以起初我实现的“简(丑)易(陋)”版本是这样的:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

不要关注样式,重点就是实现之后才发现看起来人家Echarts的实现描点非常的圆滑,也由此引发了之后的探讨。怎么有规律的画平滑曲线?

效果图

先来看下最终模仿的实现:

因为我也不知道Echarts内部怎么实现的(逃

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

看起来已经非常圆润了,和我们最初的设想十分接近了。再看下曲线是否穿过了描点:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

好的!结果很明显现在来重新看下我们的实现方式。

实现过程

  1. 绘制折线图
  2. 贝塞尔曲线平滑拟合

模拟数据

var data = [Math.random() * 300];
        for (var i = 1; i < 50; i++) { //按照echarts
            data.push(Math.round((Math.random() - 0.5) * 20 + data[i - 1]));
        }
        option = {
            canvas:{
                id: 'canvas'
            },
            series: {
                name: '模拟数据',
                itemStyle: {
                    color: 'rgb(255, 70, 131)'
                },
                areaStyle: {
                    color: 'rgb(255, 158, 68)'
                },
                data: data
            }
        };

绘制折线图

首先初始化一个构造函数来放置需要用到的数据:

function LinearGradient(option) {
    this.canvas = document.getElementById(option.canvas.id)
    this.ctx = this.canvas.getContext('2d')
    this.width = this.canvas.width
    this.height = this.canvas.height
    this.tooltip = option.tooltip
    this.title = option.text
    this.series = option.series //存放模拟数据
}

绘制折线图:

LinearGradient.prototype.draw1 = function() { //折线参考线
    ... 
    //要考虑到canvas中的原点是左上角,
    //所以下面要做一些换算,
    //diff为x,y轴被数据最大值和最小值的取值范围所平分的等份。
    this.series.data.forEach(function(item, index) {
        var x = diffX * index,
            y = Math.floor(self.height - diffY * (item - dataMin))
        self.ctx.lineTo(x, y) //绘制各个数据点
    })
    ...
}

贝塞尔曲线平滑拟合

贝塞尔曲线的关键点在于控制点的选择,这个网站可以动态的展现控制点不同而绘制的不同的曲线。而对于控制点的计算。。作者还是选择了百度一下毕竟数学不好:)。具体算法有兴趣的同学可以深入了解下,现在直接说下计算控制点的结论。

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

上面的公式涉及到四个坐标点,当前点,前一个点以及后两个点,而当坐标值为下图展示的时候绘制出来的曲线如下所示:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法

不过会有一个问题就是起始点和最后一个点不能用这个公式,不过那篇文章也给出了边界值的处理办法:

基于canvas使用贝塞尔曲线平滑拟合折线段的方法 

所以在将折线换成平滑曲线的时候,将边界值以及其他控制点计算好之后代入到贝塞尔函数中就完成了:

//核心实现
this.series.data.forEach(function(item, index) { //找到前一个点到下一个点中间的控制点
    var scale = 0.1 //分别对于ab控制点的一个正数,可以分别自行调整
    var last1X = diffX * (index - 1),
        last1Y = Math.floor(self.height - diffY * (self.series.data[index - 1] - dataMin)),
        //前一个点坐标
        last2X = diffX * (index - 2),
        last2Y = Math.floor(self.height - diffY * (self.series.data[index - 2] - dataMin)),
        //前两个点坐标
        nowX = diffX * (index),
        nowY = Math.floor(self.height - diffY * (self.series.data[index] - dataMin)),
        //当期点坐标
        nextX = diffX * (index + 1),
        nextY = Math.floor(self.height - diffY * (self.series.data[index + 1] - dataMin)),
        //下一个点坐标
        cAx = last1X + (nowX - last2X) * scale,
        cAy = last1Y + (nowY - last2Y) * scale,
        cBx = nowX - (nextX - last1X) * scale,
        cBy = nowY - (nextY - last1Y) * scale 
    if(index === 0) {
        self.ctx.lineTo(nowX, nowY)
        return
    } else if(index ===1) {
        cAx = last1X + (nowX - 0) * scale
        cAy = last1Y + (nowY - self.height) * scale 
    } else if(index === self.series.data.length - 1) {
        cBx = nowX - (nowX - last1X) * scale
        cBy = nowY - (nowY - last1Y) * scale
    } 
        self.ctx.bezierCurveTo(cAx, cAy, cBx, cBy, nowX, nowY);
        //绘制出上一个点到当前点的贝塞尔曲线
    })

由于我每次遍历的点都是当前点,但是文章中给出的公式是计算会知道下一个点的控制点算法,故在代码实现中我将所有点的计算挪前了一位。当index = 0时也就是初始点是不需要曲线绘制的,因为我们绘制的是从前一个点到当前点的曲线,没有到0的曲线需要绘制。从index = 1开始我们就可以正常开始绘制,从0到1的曲线,由于index = 1时是没有在他前面第二个点的故其属于边界值点,也就是需要特殊进行计算,以及最后一个点。其余均按照正常公式算出AB的xy坐标代入贝塞尔函数即可。

最后

源代码见这里

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

HTML / CSS 相关文章推荐
CSS3 3D制作实战案例分析
Sep 18 HTML / CSS
CSS3中的注音对齐属性ruby-align用法指南
Jul 01 HTML / CSS
CSS3控制HTML元素动画效果
Feb 08 HTML / CSS
CSS3 清除浮动的方法示例
Jun 01 HTML / CSS
使用HTML5 IndexDB存储图像和文件的示例
Nov 05 HTML / CSS
使用html2canvas实现浏览器截图的示例代码
Jan 26 HTML / CSS
深入探究HTML5的History API
Jul 09 HTML / CSS
CSS3 画基本图形,圆形、椭圆形、三角形等
Sep 20 HTML / CSS
基于HTML5+CSS3实现简单的时钟效果
Sep 11 HTML / CSS
详解HTML5常用的语义化标签
Sep 27 HTML / CSS
使用HTML5做的导航条详细步骤
Oct 19 HTML / CSS
html5跳转小程序wx-open-launch-weapp踩坑
Dec 02 HTML / CSS
canvas实现高阶贝塞尔曲线(N阶贝塞尔曲线生成器)
Jan 10 #HTML / CSS
H5混合开发app如何升级的方法
Jan 10 #HTML / CSS
浅谈关于html5中图片抛物线运动的一些心得
Jan 09 #HTML / CSS
详解快速开发基于 HTML5 网络拓扑图应用
Jan 08 #HTML / CSS
浅谈HTML5 Web Worker的使用
Jan 05 #HTML / CSS
详解基于canvas的视频遮罩插件
Jan 04 #HTML / CSS
详解HTML5中的picture元素响应式处理图片
Jan 03 #HTML / CSS
You might like
php与XML、XSLT、Mysql的结合运用实现代码
2009/11/19 PHP
比较discuz和ecshop的截取字符串函数php版
2012/09/03 PHP
PHP PDOStatement::rowCount讲解
2019/02/01 PHP
PHP针对redis常用操作实例详解
2019/08/17 PHP
laravel 解决多库下的DB::transaction()事务失效问题
2019/10/21 PHP
PHP设计模式之数据访问对象模式(DAO)原理与用法实例分析
2019/12/12 PHP
PHP 加密 Password Hashing API基础知识点
2020/03/02 PHP
CCPry JS类库 代码
2009/10/30 Javascript
javascript(jquery)利用函数修改全局变量的代码
2009/11/02 Javascript
封装的原生javascript弹出层代码
2010/09/24 Javascript
jQuery让控件左右移动的三种实现方法
2013/09/08 Javascript
jquery实现点击消失的代码
2014/03/03 Javascript
jquery图片轮播插件仿支付宝2013版全屏图片幻灯片
2014/04/03 Javascript
JQuery设置时间段下拉选择实例
2014/12/30 Javascript
浅谈Javascript中的Function与Object
2015/01/26 Javascript
JS &amp; JQuery 动态添加 select option
2016/06/08 Javascript
vue2利用Bus.js如何实现非父子组件通信详解
2017/08/25 Javascript
Angular @HostBinding()和@HostListener()用法
2018/03/05 Javascript
Vue中使用vee-validate表单验证的方法
2018/05/09 Javascript
深入浅析Vue中mixin和extend的区别和使用场景
2019/08/01 Javascript
python 判断一个进程是否存在
2009/04/09 Python
对python中Json与object转化的方法详解
2018/12/31 Python
Python类反射机制使用实例解析
2019/12/30 Python
python调用jenkinsAPI构建jenkins,并传递参数的示例
2020/12/09 Python
python 6种方法实现单例模式
2020/12/15 Python
智能旅行箱:Horizn Studios
2018/04/30 全球购物
Everything But Water官网:美国泳装品牌
2019/03/17 全球购物
Charles & Colvard官网:美国莫桑石品牌
2019/06/05 全球购物
介绍一下XMLHttpRequest对象
2012/02/12 面试题
应用数学自荐书范文
2013/11/24 职场文书
万年牢教学反思
2014/02/15 职场文书
《陈毅探母》教学反思
2014/05/01 职场文书
感恩节寄语2015
2015/03/24 职场文书
2015教师个人工作总结范文
2015/03/31 职场文书
五星级酒店前台接待岗位职责
2015/04/02 职场文书
【海涛教你打DOTA】死灵飞龙第一视角解说
2022/04/01 DOTA