教你使用TensorFlow2识别验证码


Posted in Python onJune 11, 2021

验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册、灌水、发垃圾广告等等 。

数据集来源:https://www.kaggle.com/fournierp/captcha-version-2-images

图片是5个字母的单词,可以包含数字。这些图像应用了噪声(模糊和一条线)。它们是200 x 50 PNG。我们的任务是尝试制作光学字符识别算法的模型。

教你使用TensorFlow2识别验证码

在数据集中存在的验证码png图片,对应的标签就是图片的名字。

import os
import numpy as np
import pandas as pd
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
# imgaug 图片数据增强
import imgaug.augmenters as iaa
import tensorflow as tf
# Conv2D MaxPooling2D Dropout Flatten Dense BN  GAP
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Layer, BatchNormalization, GlobalAveragePooling2D 
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import Model, Input 
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
# 图片处理器
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import plotly.express as px
import plotly.graph_objects as go
import plotly.offline as pyo
pyo.init_notebook_mode()

对数据进行一个简单的分析,统计图像中大约出现了什么样的符号。

# 数据路径
DIR = '../input/captcha-version-2-images/samples/samples'
# 存储验证码的标签
captcha_list = []
characters = {}
for captcha in os.listdir(DIR):
    captcha_list.append(captcha)
    # 每张验证码的captcha_code
    captcha_code = captcha.split(".")[0]
    for i in captcha_code:
        # 遍历captcha_code 
        characters[i] = characters.get(i, 0) +1
symbols = list(characters.keys())
len_symbols = len(symbols)
print(f'图像中只使用了{len_symbols}符号')

plt.bar(*zip(*characters.items()))
plt.title('Frequency of symbols')
plt.show()

教你使用TensorFlow2识别验证码

如何提取图像的数据建立X,y??

# 如何提取图像 建立 model  X 的shape  1070 * 50 * 200 * 1 
# y的shape 5 * 1070 * 19
 
for i, captcha in enumerate(captcha_list):
    captcha_code = captcha.split('.')[0]
    # cv2.IMREAD_GRAYSCALE 灰度图
    captcha_cv2 = cv2.imread(os.path.join(DIR, captcha),cv2.IMREAD_GRAYSCALE)
    # 缩放
    captcha_cv2 = captcha_cv2 / 255.0
    # print(captcha_cv2.shape) (50, 200) 
    # 将captcha_cv2的(50, 200) 切换成(50, 200, 1)
    captcha_cv2 = np.reshape(captcha_cv2, img_shape)
    # (5,19)
    targs = np.zeros((len_captcha, len_symbols))
    
    for a, b in enumerate(captcha_code):
        targs[a, symbols.index(b)] = 1
    X[i] = captcha_cv2
    y[:, i] = targs

print("shape of X:", X.shape)
print("shape of y:", y.shape)

输出如下

print("shape of X:", X.shape)
print("shape of y:", y.shape)

通过Numpy中random 随机选择数据,划分训练集和测试集

# 生成随机数
from numpy.random import default_rng

rng = default_rng(seed=1)
test_numbers = rng.choice(1070, size=int(1070*0.3), replace=False)
X_test = X[test_numbers]
X_full = np.delete(X, test_numbers,0)
y_test = y[:,test_numbers]
y_full = np.delete(y, test_numbers,1)

val_numbers = rng.choice(int(1070*0.7), size=int(1070*0.3), replace=False)

X_val = X_full[val_numbers]
X_train = np.delete(X_full, val_numbers,0)
y_val = y_full[:,val_numbers]
y_train = np.delete(y_full, val_numbers,1)

在此验证码数据中,容易出现过拟合的现象,你可能会想到添加更多的新数据、 添加正则项等, 但这里使用数据增强的方法,特别是对于机器视觉的任务,数据增强技术尤为重要。

常用的数据增强操作:imgaug库。imgaug是提供了各种图像增强操作的python库 https://github.com/aleju/imgaug

imgaug几乎包含了所有主流的数据增强的图像处理操作, 增强方法详见github

# Sequential(C, R)	 尺寸增加了5倍,
# 选取一系列子增强器C作用于每张图片的位置,第二个参数表示是否对每个batch的图片应用不同顺序的Augmenter list     # rotate=(-8, 8)  旋转
# iaa.CropAndPad  截取(crop)或者填充(pad),填充时,被填充区域为黑色。
# px: 想要crop(negative values)的或者pad(positive values)的像素点。
# (top, right, bottom, left)
# 当pad_mode=constant的时候选择填充的值
aug =iaa.Sequential([iaa.CropAndPad(
    px=((0, 10), (0, 35), (0, 10), (0, 35)),
    pad_mode=['edge'],
    pad_cval=1
),iaa.Rotate(rotate=(-8,8))])

X_aug_train = None
y_aug_train = y_train
for i in range(40):
    X_aug = aug(images = X_train)
    if X_aug_train is not None:
        X_aug_train = np.concatenate([X_aug_train, X_aug], axis = 0)
        y_aug_train = np.concatenate([y_aug_train, y_train], axis = 1)
    else:
        X_aug_train = X_aug

让我们看看一些数据增强的训练图像。

fig, ax = plt.subplots(nrows=2, ncols =5, figsize = (16,16))
for i in range(10):
    index = np.random.randint(X_aug_train.shape[0])
    ax[i//5][i%5].imshow(X_aug_train[index],cmap='gray')

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

这次使用函数式API创建模型,函数式API是创建模型的另一种方式,它具有更多的灵活性,包括创建更为复杂的模型。

需要定义inputsoutputs

#函数式API模型创建
captcha = Input(shape=(50,200,channels))
x = Conv2D(32, (5,5),padding='valid',activation='relu')(captcha)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(64, (3,3),padding='same',activation='relu')(x)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(128, (3,3),padding='same',activation='relu')(x)
maxpool = MaxPooling2D((2,2),padding='same')(x)
outputs = []
for i in range(5):
    x = Conv2D(256, (3,3),padding='same',activation='relu')(maxpool)
    x = MaxPooling2D((2,2),padding='same')(x)
    x = Flatten()(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(64, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(len_symbols , activation='softmax' , name=f'char_{i+1}')(x)
    outputs.append(x)
    
model = Model(inputs = captcha , outputs=outputs)
# ReduceLROnPlateau更新学习率
reduce_lr = ReduceLROnPlateau(patience =3, factor = 0.5,verbose = 1)
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0005), metrics=["accuracy"])
# EarlyStopping用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小
earlystopping = EarlyStopping(monitor ="val_loss",  
                             mode ="min", patience = 10,
                              min_delta = 1e-4,
                             restore_best_weights = True) 

history = model.fit(X_train, [y_train[i] for i in range(5)], batch_size=32, epochs=30, verbose=1, validation_data = (X_val, [y_val[i] for i in range(5)]), callbacks =[earlystopping,reduce_lr])

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

下面对model进行一个测试和评估。

score = model.evaluate(X_test,[y_test[0], y_test[1], y_test[2], y_test[3], y_test[4]],verbose=1)
metrics = ['loss','char_1_loss', 'char_2_loss', 'char_3_loss', 'char_4_loss', 'char_5_loss', 'char_1_acc', 'char_2_acc', 'char_3_acc', 'char_4_acc', 'char_5_acc']

for i,j in zip(metrics, score):
    print(f'{i}: {j}')

具体输出如下:

11/11 [==============================] - 0s 11ms/step - loss: 0.7246 - char_1_loss: 0.0682 - char_2_loss: 0.1066 - char_3_loss: 0.2730 - char_4_loss: 0.2636 - char_5_loss: 0.0132 - char_1_accuracy: 0.9844 - char_2_accuracy: 0.9657 - char_3_accuracy: 0.9408 - char_4_accuracy: 0.9626 - char_5_accuracy: 0.9938
loss: 0.7246273756027222
char_1_loss: 0.06818050146102905
char_2_loss: 0.10664034634828568
char_3_loss: 0.27299806475639343
char_4_loss: 0.26359987258911133
char_5_loss: 0.013208594173192978
char_1_acc: 0.9844236969947815
char_2_acc: 0.9657320976257324
char_3_acc: 0.940809965133667
char_4_acc: 0.9626168012619019
char_5_acc: 0.9937694668769836

字母1到字母5的精确值都大于

绘制loss和score

metrics_df = pd.DataFrame(history.history)

columns = [col for col in metrics_df.columns if 'loss' in col and len(col)>8]

fig = px.line(metrics_df, y = columns)
fig.show()

教你使用TensorFlow2识别验证码

plt.figure(figsize=(15,8))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right',prop={'size': 10})
plt.show()

教你使用TensorFlow2识别验证码

# 预测数据
def predict(captcha):
    captcha = np.reshape(captcha , (1, 50,200,channels))
    result = model.predict(captcha)
    result = np.reshape(result ,(5,len_symbols))
    # 取出最大预测中的输出
    label = ''.join([symbols[np.argmax(i)] for i in result])
    return label
    
predict(X_test[2])
# 25277

下面预测所有的数据

actual_pred = []

for i in range(X_test.shape[0]):
    actual = ''.join([symbols[i] for i in (np.argmax(y_test[:, i],axis=1))])
    pred =  predict(X_test[i])
    actual_pred.append((actual, pred))
print(actal_pred[:10])

输出如下:

[('n4b4m', 'n4b4m'), ('42nxy', '42nxy'), ('25257', '25277'), ('cewnm', 'cewnm'), ('w46ep', 'w46ep'), ('cdcb3', 'edcb3'), ('8gf7n', '8gf7n'), ('nny5e', 'nny5e'), ('gm2c2', 'gm2c2'), ('g7fmc', 'g7fmc')]

sameCount = 0
diffCount = 0
letterDiff = {i:0 for i in range(5)}
incorrectness = {i:0 for i in range(1,6)}
for real, pred in actual_pred:
    # 预测和输出相同
    if real == pred:
        sameCount += 1
    else:
        # 失败
        diffCount += 1
        # 遍历
        incorrectnessPoint = 0
        for i in range(5):
            if real[i] != pred[i]:
                letterDiff[i] += 1
                incorrectnessPoint += 1
        incorrectness[incorrectnessPoint] += 1


x = ['True predicted', 'False predicted']
y = [sameCount, diffCount]

fig = go.Figure(data=[go.Bar(x = x, y = y)])
fig.show()

在预测数据中,一共有287个数据预测正确。

教你使用TensorFlow2识别验证码

在这里,我们可以看到出现错误到底是哪一个index。

x1 = ["Character " + str(x) for x in range(1, 6)]
    
fig = go.Figure(data=[go.Bar(x = x1, y = list(letterDiff.values()))])
fig.show()

教你使用TensorFlow2识别验证码

为了计算每个单词的错误数,绘制相关的条形图。

x2 = [str(x) + " incorrect" for x in incorrectness.keys()]
y2 = list(incorrectness.values())

fig = go.Figure(data=[go.Bar(x = x2, y = y2)])
fig.show()

教你使用TensorFlow2识别验证码

下面绘制错误的验证码图像,并标准正确和错误的区别。

fig, ax = plt.subplots(nrows = 8, ncols=4,figsize = (16,20))
count = 0
for i, (actual , pred) in enumerate(actual_pred):
    if actual != pred:
        img = X_test[i]
        try:
            ax[count//4][count%4].imshow(img, cmap = 'gray')
            ax[count//4][count%4].title.set_text(pred + ' - ' + actual)
            count += 1
        except:
            pass

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

到此这篇关于教你使用TensorFlow2识别验证码的文章就介绍到这了,更多相关TensorFlow2识别验证码内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现从网络下载文件并获得文件大小及类型的方法
Apr 28 Python
初步讲解Python中的元组概念
May 21 Python
通过mod_python配置运行在Apache上的Django框架
Jul 22 Python
Python的SQLalchemy模块连接与操作MySQL的基础示例
Jul 11 Python
轻松理解Python 中的 descriptor
Sep 15 Python
python实现淘宝秒杀聚划算抢购自动提醒源码
Jun 23 Python
利用python开发app实战的方法
Jul 09 Python
解决Django Static内容不能加载显示的问题
Jul 28 Python
python滑块验证码的破解实现
Nov 10 Python
关于numpy.where()函数 返回值的解释
Dec 06 Python
对Matlab中共轭、转置和共轭装置的区别说明
May 11 Python
jupyter notebook指定启动目录的方法
Mar 02 Python
Python使用OpenCV和K-Means聚类对毕业照进行图像分割
Python3中PyQt5简单实现文件打开及保存
Jun 10 #Python
Python selenium的这三种等待方式一定要会!
python实现股票历史数据可视化分析案例
Python如何识别银行卡卡号?
使用python+pygame开发消消乐游戏附完整源码
Python数据可视化之基于pyecharts实现的地理图表的绘制
You might like
php 目录遍历、删除 函数的使用介绍
2013/04/28 PHP
php实现文件下载功能的几个代码分享
2014/05/10 PHP
将二维数组转为一维数组的2种方法
2014/05/26 PHP
PHP中mysqli_affected_rows作用行数返回值分析
2014/12/26 PHP
PHP统一页面编码避免乱码问题
2015/04/09 PHP
Yii2实现自定义独立验证器的方法
2017/05/05 PHP
PHP实现与java 通信的插件使用教程
2019/08/11 PHP
php获取微信openid方法总结
2019/10/10 PHP
javascript 强制刷新页面的实现代码
2009/12/13 Javascript
juqery 学习之三 选择器 子元素与表单
2010/11/25 Javascript
jQuery 瀑布流 绝对定位布局(二)(延迟AJAX加载图片)
2012/05/23 Javascript
原生js的弹出层且其内的窗口居中
2014/05/14 Javascript
jQuery实现长按按钮触发事件的方法
2015/02/02 Javascript
JavaScript中的数据类型转换方法小结
2015/10/26 Javascript
逻辑表达式中与或非的用法详解
2016/06/06 Javascript
总结Javascript中数组各种去重的方法
2016/10/04 Javascript
Bootstrap 轮播(Carousel)插件
2016/12/26 Javascript
HTML5+Canvas调用手机拍照功能实现图片上传(下)
2017/04/21 Javascript
简单实现jQuery上传图片显示预览功能
2020/06/29 jQuery
webpack 打包压缩js和css的方法示例
2018/03/20 Javascript
深入浅析Vue中的 computed 和 watch
2018/06/06 Javascript
微信小程序使用swiper组件实现类3D轮播图
2018/08/29 Javascript
vuejs中监听窗口关闭和窗口刷新事件的方法
2018/09/21 Javascript
Android 自定义view仿微信相机单击拍照长按录视频按钮
2019/07/19 Javascript
[02:48]DOTA2英雄基础教程 拉席克
2013/12/12 DOTA
Python第三方库的安装方法总结
2016/06/06 Python
Python在线运行代码助手
2016/07/15 Python
python框架django基础指南
2016/09/08 Python
django实现同一个ip十分钟内只能注册一次的实例
2017/11/03 Python
Django ValuesQuerySet转json方式
2020/03/16 Python
应届生的求职推荐信范文
2013/11/30 职场文书
《明天,我们毕业》教学反思
2014/04/24 职场文书
渠道运营商合作协议书范本
2014/10/06 职场文书
党委班子纠正“四风”问题整改措施
2014/10/28 职场文书
Redis三种集群模式详解
2021/10/05 Redis
SpringBoot2零基础到精通之数据与页面响应
2022/03/22 Java/Android