教你使用TensorFlow2识别验证码


Posted in Python onJune 11, 2021

验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册、灌水、发垃圾广告等等 。

数据集来源:https://www.kaggle.com/fournierp/captcha-version-2-images

图片是5个字母的单词,可以包含数字。这些图像应用了噪声(模糊和一条线)。它们是200 x 50 PNG。我们的任务是尝试制作光学字符识别算法的模型。

教你使用TensorFlow2识别验证码

在数据集中存在的验证码png图片,对应的标签就是图片的名字。

import os
import numpy as np
import pandas as pd
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
# imgaug 图片数据增强
import imgaug.augmenters as iaa
import tensorflow as tf
# Conv2D MaxPooling2D Dropout Flatten Dense BN  GAP
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Layer, BatchNormalization, GlobalAveragePooling2D 
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import Model, Input 
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
# 图片处理器
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import plotly.express as px
import plotly.graph_objects as go
import plotly.offline as pyo
pyo.init_notebook_mode()

对数据进行一个简单的分析,统计图像中大约出现了什么样的符号。

# 数据路径
DIR = '../input/captcha-version-2-images/samples/samples'
# 存储验证码的标签
captcha_list = []
characters = {}
for captcha in os.listdir(DIR):
    captcha_list.append(captcha)
    # 每张验证码的captcha_code
    captcha_code = captcha.split(".")[0]
    for i in captcha_code:
        # 遍历captcha_code 
        characters[i] = characters.get(i, 0) +1
symbols = list(characters.keys())
len_symbols = len(symbols)
print(f'图像中只使用了{len_symbols}符号')

plt.bar(*zip(*characters.items()))
plt.title('Frequency of symbols')
plt.show()

教你使用TensorFlow2识别验证码

如何提取图像的数据建立X,y??

# 如何提取图像 建立 model  X 的shape  1070 * 50 * 200 * 1 
# y的shape 5 * 1070 * 19
 
for i, captcha in enumerate(captcha_list):
    captcha_code = captcha.split('.')[0]
    # cv2.IMREAD_GRAYSCALE 灰度图
    captcha_cv2 = cv2.imread(os.path.join(DIR, captcha),cv2.IMREAD_GRAYSCALE)
    # 缩放
    captcha_cv2 = captcha_cv2 / 255.0
    # print(captcha_cv2.shape) (50, 200) 
    # 将captcha_cv2的(50, 200) 切换成(50, 200, 1)
    captcha_cv2 = np.reshape(captcha_cv2, img_shape)
    # (5,19)
    targs = np.zeros((len_captcha, len_symbols))
    
    for a, b in enumerate(captcha_code):
        targs[a, symbols.index(b)] = 1
    X[i] = captcha_cv2
    y[:, i] = targs

print("shape of X:", X.shape)
print("shape of y:", y.shape)

输出如下

print("shape of X:", X.shape)
print("shape of y:", y.shape)

通过Numpy中random 随机选择数据,划分训练集和测试集

# 生成随机数
from numpy.random import default_rng

rng = default_rng(seed=1)
test_numbers = rng.choice(1070, size=int(1070*0.3), replace=False)
X_test = X[test_numbers]
X_full = np.delete(X, test_numbers,0)
y_test = y[:,test_numbers]
y_full = np.delete(y, test_numbers,1)

val_numbers = rng.choice(int(1070*0.7), size=int(1070*0.3), replace=False)

X_val = X_full[val_numbers]
X_train = np.delete(X_full, val_numbers,0)
y_val = y_full[:,val_numbers]
y_train = np.delete(y_full, val_numbers,1)

在此验证码数据中,容易出现过拟合的现象,你可能会想到添加更多的新数据、 添加正则项等, 但这里使用数据增强的方法,特别是对于机器视觉的任务,数据增强技术尤为重要。

常用的数据增强操作:imgaug库。imgaug是提供了各种图像增强操作的python库 https://github.com/aleju/imgaug

imgaug几乎包含了所有主流的数据增强的图像处理操作, 增强方法详见github

# Sequential(C, R)	 尺寸增加了5倍,
# 选取一系列子增强器C作用于每张图片的位置,第二个参数表示是否对每个batch的图片应用不同顺序的Augmenter list     # rotate=(-8, 8)  旋转
# iaa.CropAndPad  截取(crop)或者填充(pad),填充时,被填充区域为黑色。
# px: 想要crop(negative values)的或者pad(positive values)的像素点。
# (top, right, bottom, left)
# 当pad_mode=constant的时候选择填充的值
aug =iaa.Sequential([iaa.CropAndPad(
    px=((0, 10), (0, 35), (0, 10), (0, 35)),
    pad_mode=['edge'],
    pad_cval=1
),iaa.Rotate(rotate=(-8,8))])

X_aug_train = None
y_aug_train = y_train
for i in range(40):
    X_aug = aug(images = X_train)
    if X_aug_train is not None:
        X_aug_train = np.concatenate([X_aug_train, X_aug], axis = 0)
        y_aug_train = np.concatenate([y_aug_train, y_train], axis = 1)
    else:
        X_aug_train = X_aug

让我们看看一些数据增强的训练图像。

fig, ax = plt.subplots(nrows=2, ncols =5, figsize = (16,16))
for i in range(10):
    index = np.random.randint(X_aug_train.shape[0])
    ax[i//5][i%5].imshow(X_aug_train[index],cmap='gray')

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

这次使用函数式API创建模型,函数式API是创建模型的另一种方式,它具有更多的灵活性,包括创建更为复杂的模型。

需要定义inputsoutputs

#函数式API模型创建
captcha = Input(shape=(50,200,channels))
x = Conv2D(32, (5,5),padding='valid',activation='relu')(captcha)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(64, (3,3),padding='same',activation='relu')(x)
x = MaxPooling2D((2,2),padding='same')(x)
x = Conv2D(128, (3,3),padding='same',activation='relu')(x)
maxpool = MaxPooling2D((2,2),padding='same')(x)
outputs = []
for i in range(5):
    x = Conv2D(256, (3,3),padding='same',activation='relu')(maxpool)
    x = MaxPooling2D((2,2),padding='same')(x)
    x = Flatten()(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(64, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = BatchNormalization()(x)
    x = Dense(len_symbols , activation='softmax' , name=f'char_{i+1}')(x)
    outputs.append(x)
    
model = Model(inputs = captcha , outputs=outputs)
# ReduceLROnPlateau更新学习率
reduce_lr = ReduceLROnPlateau(patience =3, factor = 0.5,verbose = 1)
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0005), metrics=["accuracy"])
# EarlyStopping用于提前停止训练的callbacks。具体地,可以达到当训练集上的loss不在减小
earlystopping = EarlyStopping(monitor ="val_loss",  
                             mode ="min", patience = 10,
                              min_delta = 1e-4,
                             restore_best_weights = True) 

history = model.fit(X_train, [y_train[i] for i in range(5)], batch_size=32, epochs=30, verbose=1, validation_data = (X_val, [y_val[i] for i in range(5)]), callbacks =[earlystopping,reduce_lr])

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

下面对model进行一个测试和评估。

score = model.evaluate(X_test,[y_test[0], y_test[1], y_test[2], y_test[3], y_test[4]],verbose=1)
metrics = ['loss','char_1_loss', 'char_2_loss', 'char_3_loss', 'char_4_loss', 'char_5_loss', 'char_1_acc', 'char_2_acc', 'char_3_acc', 'char_4_acc', 'char_5_acc']

for i,j in zip(metrics, score):
    print(f'{i}: {j}')

具体输出如下:

11/11 [==============================] - 0s 11ms/step - loss: 0.7246 - char_1_loss: 0.0682 - char_2_loss: 0.1066 - char_3_loss: 0.2730 - char_4_loss: 0.2636 - char_5_loss: 0.0132 - char_1_accuracy: 0.9844 - char_2_accuracy: 0.9657 - char_3_accuracy: 0.9408 - char_4_accuracy: 0.9626 - char_5_accuracy: 0.9938
loss: 0.7246273756027222
char_1_loss: 0.06818050146102905
char_2_loss: 0.10664034634828568
char_3_loss: 0.27299806475639343
char_4_loss: 0.26359987258911133
char_5_loss: 0.013208594173192978
char_1_acc: 0.9844236969947815
char_2_acc: 0.9657320976257324
char_3_acc: 0.940809965133667
char_4_acc: 0.9626168012619019
char_5_acc: 0.9937694668769836

字母1到字母5的精确值都大于

绘制loss和score

metrics_df = pd.DataFrame(history.history)

columns = [col for col in metrics_df.columns if 'loss' in col and len(col)>8]

fig = px.line(metrics_df, y = columns)
fig.show()

教你使用TensorFlow2识别验证码

plt.figure(figsize=(15,8))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right',prop={'size': 10})
plt.show()

教你使用TensorFlow2识别验证码

# 预测数据
def predict(captcha):
    captcha = np.reshape(captcha , (1, 50,200,channels))
    result = model.predict(captcha)
    result = np.reshape(result ,(5,len_symbols))
    # 取出最大预测中的输出
    label = ''.join([symbols[np.argmax(i)] for i in result])
    return label
    
predict(X_test[2])
# 25277

下面预测所有的数据

actual_pred = []

for i in range(X_test.shape[0]):
    actual = ''.join([symbols[i] for i in (np.argmax(y_test[:, i],axis=1))])
    pred =  predict(X_test[i])
    actual_pred.append((actual, pred))
print(actal_pred[:10])

输出如下:

[('n4b4m', 'n4b4m'), ('42nxy', '42nxy'), ('25257', '25277'), ('cewnm', 'cewnm'), ('w46ep', 'w46ep'), ('cdcb3', 'edcb3'), ('8gf7n', '8gf7n'), ('nny5e', 'nny5e'), ('gm2c2', 'gm2c2'), ('g7fmc', 'g7fmc')]

sameCount = 0
diffCount = 0
letterDiff = {i:0 for i in range(5)}
incorrectness = {i:0 for i in range(1,6)}
for real, pred in actual_pred:
    # 预测和输出相同
    if real == pred:
        sameCount += 1
    else:
        # 失败
        diffCount += 1
        # 遍历
        incorrectnessPoint = 0
        for i in range(5):
            if real[i] != pred[i]:
                letterDiff[i] += 1
                incorrectnessPoint += 1
        incorrectness[incorrectnessPoint] += 1


x = ['True predicted', 'False predicted']
y = [sameCount, diffCount]

fig = go.Figure(data=[go.Bar(x = x, y = y)])
fig.show()

在预测数据中,一共有287个数据预测正确。

教你使用TensorFlow2识别验证码

在这里,我们可以看到出现错误到底是哪一个index。

x1 = ["Character " + str(x) for x in range(1, 6)]
    
fig = go.Figure(data=[go.Bar(x = x1, y = list(letterDiff.values()))])
fig.show()

教你使用TensorFlow2识别验证码

为了计算每个单词的错误数,绘制相关的条形图。

x2 = [str(x) + " incorrect" for x in incorrectness.keys()]
y2 = list(incorrectness.values())

fig = go.Figure(data=[go.Bar(x = x2, y = y2)])
fig.show()

教你使用TensorFlow2识别验证码

下面绘制错误的验证码图像,并标准正确和错误的区别。

fig, ax = plt.subplots(nrows = 8, ncols=4,figsize = (16,20))
count = 0
for i, (actual , pred) in enumerate(actual_pred):
    if actual != pred:
        img = X_test[i]
        try:
            ax[count//4][count%4].imshow(img, cmap = 'gray')
            ax[count//4][count%4].title.set_text(pred + ' - ' + actual)
            count += 1
        except:
            pass

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

教你使用TensorFlow2识别验证码

到此这篇关于教你使用TensorFlow2识别验证码的文章就介绍到这了,更多相关TensorFlow2识别验证码内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python开发中module模块用法实例分析
Nov 12 Python
python实现多线程抓取知乎用户
Dec 12 Python
详解python开发环境搭建
Dec 16 Python
使用Python绘制图表大全总结
Feb 11 Python
Django 导出 Excel 代码的实例详解
Aug 11 Python
python2.7到3.x迁移指南
Feb 01 Python
详解python之heapq模块及排序操作
Apr 04 Python
python实现最小二乘法线性拟合
Jul 19 Python
np.dot()函数的用法详解
Jan 17 Python
python调用私有属性的方法总结
Jul 24 Python
如何在C++中调用Python
May 21 Python
python基础之文件操作
Oct 24 Python
Python使用OpenCV和K-Means聚类对毕业照进行图像分割
Python3中PyQt5简单实现文件打开及保存
Jun 10 #Python
Python selenium的这三种等待方式一定要会!
python实现股票历史数据可视化分析案例
Python如何识别银行卡卡号?
使用python+pygame开发消消乐游戏附完整源码
Python数据可视化之基于pyecharts实现的地理图表的绘制
You might like
php Mysql日期和时间函数集合
2007/11/16 PHP
php的urlencode()URL编码函数浅析
2011/08/09 PHP
php中Snoopy类用法实例
2015/06/19 PHP
详解WordPress中过滤链接与过滤SQL语句的方法
2015/12/18 PHP
Javascript Jquery 遍历Json的实现代码
2010/03/31 Javascript
TextArea不支持maxlength的解决办法(jquery)
2011/09/13 Javascript
js 控制下拉菜单刷新的方法
2013/03/03 Javascript
Js放到HTML文件中的哪个位置有什么区别
2013/08/21 Javascript
JavaScript中伪协议 javascript:使用探讨
2014/07/18 Javascript
javascript正则表达式定义(语法)总结
2016/01/08 Javascript
JavaScript数组push方法使用注意事项
2017/10/30 Javascript
canvas绘制爱心的几种方法总结(推荐)
2017/10/31 Javascript
解决IOS端微信H5页面软键盘弹起后页面下方留白的问题
2019/06/05 Javascript
简单了解vue.js数组的常用操作
2019/06/17 Javascript
jQuery实现文本显示一段时间后隐藏的方法分析
2019/06/20 jQuery
VUE 自定义组件模板的方法详解
2019/08/30 Javascript
vue监听用户输入和点击功能
2019/09/27 Javascript
vue中提示$index is not defined错误的解决方式
2020/09/02 Javascript
python学习数据结构实例代码
2015/05/11 Python
Python 判断 有向图 是否有环的实例讲解
2018/02/01 Python
Python读取本地文件并解析网页元素的方法
2018/05/21 Python
Python WSGI的深入理解
2018/08/01 Python
Python模拟浏览器上传文件脚本的方法(Multipart/form-data格式)
2018/10/22 Python
在Python IDLE 下调用anaconda中的库教程
2020/03/09 Python
基于Python 的语音重采样函数解析
2020/07/06 Python
Python直接赋值及深浅拷贝原理详解
2020/09/05 Python
计算机应用职专应届生求职信
2013/11/12 职场文书
质检部职责
2013/12/28 职场文书
运动会致辞稿50字
2014/02/04 职场文书
机关会计岗位职责
2014/04/08 职场文书
团结就是力量演讲稿
2014/05/21 职场文书
党员批评与自我批评发言
2014/10/02 职场文书
2015年小学教导处工作总结
2015/05/26 职场文书
2019年暑期法院实习报告
2019/12/18 职场文书
教你使用一行Python代码玩遍童年的小游戏
2021/08/23 Python
Python编程源码报错解决方法总结经验分享
2021/10/05 Python