Python如何识别银行卡卡号?


Posted in Python onJune 10, 2021

一、现有资源梳理

目前有一张卡号模板图片

Python如何识别银行卡卡号?

N张测试银行卡图片,其一如下

Python如何识别银行卡卡号?

操作环境 win10-64位
代码语言 Python 3.6

二、实现方案规划

对模板操作,将十个模板和对应的数字一一对应起来

图片中通过查找轮廓,然后绘制轮廓外界矩形的方式,将每一和数字分割出来,并和对应的数字相对应。以字典的形式保存
每一个模板都是这样的形式存储。

array([[ 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255],
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255]], dtype=uint8)

对测试图片操作,取得我们需要的,每个数字的像素 .

整个照片的干扰信息很多,很难直接就定位到卡号位置,需要经过一系列的变换。
定位到卡号位置后,如何将每个卡号给提取出来,进行模板匹配,识别其数字。

1.输入的图片为RGB格式,需要转换成GRAY格式,然后再将灰度形式的图片进行二值化处理。

2.对于二值化处理之后的图片进行Sobel滤波,将数字模糊,连接起来。

3.经过Sobel之后可能数字没有连接在一起,所以执行闭操作将相邻的数字连接起来,因为数字是横向的,所以闭操作的核设置为[1,1,1,1,1,1,1,1,1]

4.通过查找轮廓和轮廓外接矩形的方式定位到连续数字区域。

5.通过连续数字区域分割出每一个数字,然后将每个数字和模板进行匹配,匹配结果最高的就是最有可能的数字。

三、代码实现

工具包导入

from imutils import contours
import numpy as np
import argparse
import cv2
import myutils

路径和绘图函数及信用卡类型设定

# 模板图片
template = 'images/ocr_a_reference.png'
# 测试图片
image = 'images/credit_card_03.png'
# 指定信用卡类型
FIRST_NUMBER = {
	"3": "American Express",
	"4": "Visa",
	"5": "MasterCard",
	"6": "Discover Card"
}
# 绘图展示
def cv_show(name,img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

模板处理

img = cv2.imread(template)
cv_show('img', img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)

# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓

ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)
print(np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}

# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
	# 计算外接矩形并且resize成合适大小
	(x, y, w, h) = cv2.boundingRect(c)
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))

	# 每一个数字对应每一个模板
	digits[i] = roi
# print(digits)

测试图片处理

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

#读取输入图像,预处理
image = cv2.imread(image)
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) 
cv_show('tophat',tophat) 
# 
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
	ksize=-1)


gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

print (np.array(gradX).shape)
cv_show('gradX',gradX)

#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
	cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)

#再来一个闭操作

thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)

# 计算轮廓

thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)

cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
	# 计算矩形
	(x, y, w, h) = cv2.boundingRect(c)
	ar = w / float(h)

	# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
	if ar > 2.5 and ar < 4.0:

		if (w > 40 and w < 55) and (h > 10 and h < 20):
			#符合的留下来
			locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []

# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
	# initialize the list of group digits
	groupOutput = []

	# 根据坐标提取每一个组
	group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
	cv_show('group',group)
	# 预处理
	group = cv2.threshold(group, 0, 255,
		cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
	cv_show('group',group)
	# 计算每一组的轮廓
	group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
		cv2.CHAIN_APPROX_SIMPLE)
	digitCnts = contours.sort_contours(digitCnts,
		method="left-to-right")[0]

	# 计算每一组中的每一个数值
	for c in digitCnts:
		# 找到当前数值的轮廓,resize成合适的的大小
		(x, y, w, h) = cv2.boundingRect(c)
		roi = group[y:y + h, x:x + w]
		roi = cv2.resize(roi, (57, 88))
		cv_show('roi',roi)

		# 计算匹配得分
		scores = []

		# 在模板中计算每一个得分
		for (digit, digitROI) in digits.items():
			# 模板匹配
			result = cv2.matchTemplate(roi, digitROI,
				cv2.TM_CCOEFF)
			(_, score, _, _) = cv2.minMaxLoc(result)
			scores.append(score)

		# 得到最合适的数字
		groupOutput.append(str(np.argmax(scores)))

	# 画出来
	cv2.rectangle(image, (gX - 5, gY - 5),
		(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
	cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

	# 得到结果
	output.extend(groupOutput)

# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
# (194, 300)
# Credit Card Type: MasterCard
# Credit Card #: 5412751234567890

所有代码连在一起就是完整的代码

到此这篇关于Python如何识别银行卡卡号?的文章就介绍到这了,更多相关Python识别卡号内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python获取外网IP并发邮件的实现方法
Oct 01 Python
Python数据分析中Groupby用法之通过字典或Series进行分组的实例
Dec 08 Python
Python cookbook(数据结构与算法)从字典中提取子集的方法示例
Mar 22 Python
Python面向对象程序设计中类的定义、实例化、封装及私有变量/方法详解
Feb 28 Python
Python常见数据类型转换操作示例
May 08 Python
深入了解Python枚举类型的相关知识
Jul 09 Python
Python数据可视化 pyecharts实现各种统计图表过程详解
Aug 15 Python
Python类super()及私有属性原理解析
Jun 15 Python
sklearn和keras的数据切分与交叉验证的实例详解
Jun 19 Python
keras实现VGG16方式(预测一张图片)
Jul 07 Python
Python操作PostgreSql数据库的方法(基本的增删改查)
Dec 29 Python
python 如何把docker-compose.yaml导入到数据库相关条目里
Jan 15 Python
使用python+pygame开发消消乐游戏附完整源码
Python数据可视化之基于pyecharts实现的地理图表的绘制
python使用PySimpleGUI设置进度条及控件使用
python3+PyQt5+Qt Designer实现界面可视化
Django使用echarts进行可视化展示的实践
教你如何使用Python Tkinter库制作记事本
Jun 10 #Python
Python中常见的反爬机制及其破解方法总结
Jun 10 #Python
You might like
短波收音机简介
2021/03/01 无线电
咖啡界又出新概念,无需咖啡豆的分子咖啡
2021/03/03 咖啡文化
Optimizer与Debugger兼容性问题的解决方法
2008/12/01 PHP
php文件上传表单摘自drupal的代码
2011/02/15 PHP
php输出xml格式字符串(用的这个)
2012/07/12 PHP
php实现监控varnish缓存服务器的状态
2014/12/30 PHP
PHP中使用curl伪造IP的简单方法
2015/08/07 PHP
php批量删除操作代码分享
2017/02/26 PHP
浅谈php的TS和NTS的区别
2019/03/13 PHP
XML的代替者----JSON
2007/07/21 Javascript
js 延迟加载 改变JS的位置加快网页加载速度
2012/12/11 Javascript
javascript新建标签,判断键盘输入,以及判断焦点(示例代码)
2013/11/25 Javascript
JavaScript动态创建form表单并提交的实现方法
2015/12/10 Javascript
JS数组合并push与concat区别分析
2015/12/17 Javascript
js纯数字逐一停止显示效果的实现代码
2016/03/16 Javascript
深入研究jQuery图片懒加载 lazyload.js使用方法
2017/08/16 jQuery
jQuery实现所有验证通过方可提交的表单验证
2017/11/21 jQuery
JavaScript引用类型RegExp基本用法详解
2018/08/09 Javascript
js console.log打印对象时属性缺失的解决方法
2019/05/23 Javascript
如何利用node.js开发一个生成逐帧动画的小工具
2019/12/01 Javascript
基于原生js实现判断元素是否有指定class名
2020/07/11 Javascript
[02:17]DOTA2亚洲邀请赛 RAVE战队出场宣传片
2015/02/07 DOTA
[55:35]VGJ.S vs Mski Supermajor小组赛C组 BO3 第二场 6.3
2018/06/04 DOTA
Python星号*与**用法分析
2018/02/02 Python
Python对ElasticSearch获取数据及操作
2019/04/24 Python
Python实现线性插值和三次样条插值的示例代码
2019/11/13 Python
python进行OpenCV实战之画图(直线、矩形、圆形)
2020/08/27 Python
关于box-sizing的全面理解
2016/07/28 HTML / CSS
高中军训感言200字
2014/02/23 职场文书
广告词串烧
2014/03/19 职场文书
乡镇网格化管理实施方案
2014/03/23 职场文书
倡议书格式
2014/04/14 职场文书
酒店端午节活动方案
2014/08/26 职场文书
保管员岗位职责
2015/02/14 职场文书
销售区域经理岗位职责
2015/04/10 职场文书
浅谈vue2的$refs在vue3组合式API中的替代方法
2021/04/18 Vue.js