keras分类之二分类实例(Cat and dog)


Posted in Python onJuly 09, 2020

1. 数据准备

在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。

2. 数据读取

# 存储数据集的目录
base_dir = 'E:/python learn/dog_and_cat/data/'
 
# 训练、验证数据集的目录
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
 
# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
 
# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
 
# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
 
# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
 
print('total training cat images:', len(os.listdir(train_cats_dir))) 
print('total training dog images:', len(os.listdir(train_dogs_dir))) 
print('total validation cat images:', len(os.listdir(validation_cats_dir))) 
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))

3. 模型建立

# 搭建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
         input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
 
print(model.summary())
 
model.compile(loss='binary_crossentropy',
       optimizer=RMSprop(lr=1e-4),
       metrics=['acc'])

4. 模型训练

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
 
train_generator = train_datagen.flow_from_directory(
  train_dir, # target directory
  target_size=(150, 150), # resize图片
  batch_size=20,
  class_mode='binary'
)
 
validation_generator = test_datagen.flow_from_directory(
  validation_dir,
  target_size=(150, 150),
  batch_size=20,
  class_mode='binary'
)
 
for data_batch, labels_batch in train_generator:
  print('data batch shape:', data_batch.shape)
  print('labels batch shape:', labels_batch.shape)
  break
 
hist = model.fit_generator(
  train_generator,
  steps_per_epoch=100,
  epochs=10,
  validation_data=validation_generator,
  validation_steps=50
)
 
model.save('cats_and_dogs_small_1.h5')

5. 模型评估

acc = hist.history['acc']
val_acc = hist.history['val_acc']
loss = hist.history['loss']
val_loss = hist.history['val_loss']
 
epochs = range(len(acc))
 
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
 
plt.legend()
plt.figure()
 
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.legend()
plt.show()

6. 预测

imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg'
test_image = image.load_img(imagename, target_size = (150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = model.predict(test_image)
 
if result[0][0] == 1:
  prediction ='dog'
else:
  prediction ='cat'
  
print(prediction)

代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测

补充知识:keras 猫狗大战自搭网络以及vgg16应用

导入模块

import os
import numpy as np
import tensorflow as tf
import random
import seaborn as sns
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import RMSprop, Adam, SGD
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16, preprocess_input
 
from sklearn.model_selection import train_test_split

加载数据集

def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False):
  train_images= [data_dir + i for i in os.listdir(data_dir)]
  
  random.shuffle(train_images)
  
  def read_image(file_path, preprocess):
    img = image.load_img(file_path, target_size=(height, width))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    # if preprocess:
      # x = preprocess_input(x)
    return x
  
  def prep_data(images, proprocess):
    count = len(images)
    data = np.ndarray((count, height, width, channels), dtype = np.float32)
    
    for i, image_file in enumerate(images):
      image = read_image(image_file, preprocess)
      data[i] = image
    
    return data
  
  def read_labels(file_path):
    labels = []
    for i in file_path:
      label = 1 if 'dog' in i else 0
      labels.append(label)
    
    return labels
  
  X = prep_data(train_images, preprocess)
  labels = read_labels(train_images)
  
  assert X.shape[0] == len(labels)
  print("Train shape: {}".format(X.shape))
  return X, labels

读取数据集

# 读取图片
WIDTH = 150
HEIGHT = 150
CHANNELS = 3
X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)

查看数据集信息

# 统计y
sns.countplot(y)
 
# 显示图片
def show_cats_and_dogs(X, idx):
  plt.figure(figsize=(10,5), frameon=True)
  img = X[idx,:,:,::-1]
  img = img/255
  plt.imshow(img)
  plt.show()
 
 
for idx in range(0,3):
  show_cats_and_dogs(X, idx)
 
train_X = X[0:17500,:,:,:]
train_y = y[0:17500]
test_X = X[17500:25000,:,:,:]
test_y = y[17500:25000]
train_X.shape
test_X.shape

自定义神经网络层数

input_layer = Input((WIDTH, HEIGHT, CHANNELS))
# 第一层
z = input_layer
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Flatten()(z)
z = Dense(64)(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Dropout(0.5)(z)
z = Dense(1)(z)
z = Activation('sigmoid')(z)
 
model = Model(input_layer, z)
 
model.compile(
  optimizer = keras.optimizers.RMSprop(),
  loss = keras.losses.binary_crossentropy,
  metrics = [keras.metrics.binary_accuracy]
)
 
model.summary()

训练模型

history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True)
score = model.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

复用vgg16模型

def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)):
  vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape)
  
  for layer in vgg16.layers:
    layer.trainable = False
  last = vgg16.output
  # 后面加入自己的模型
  x = Flatten()(last)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(1, activation='sigmoid')(x)
  
  model = Model(inputs=vgg16.input, outputs=x)
  
  return model

编译模型

model_vgg16 = vgg16_model()
model_vgg16.summary()
model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])

训练模型

# 训练模型
history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True)
score = model_vgg16.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现socket客户端和服务端简单示例
Feb 24 Python
Python判断操作系统类型代码分享
Nov 22 Python
Python实现八大排序算法
Aug 13 Python
Python网络爬虫出现乱码问题的解决方法
Jan 05 Python
Python 数据处理库 pandas 入门教程基本操作
Apr 19 Python
Python 实现网页自动截图的示例讲解
May 17 Python
python使用pandas处理大数据节省内存技巧(推荐)
May 05 Python
Django之提交表单与前后端交互的方法
Jul 19 Python
Python 线程池用法简单示例
Oct 02 Python
python语言是免费还是收费的?
Jun 15 Python
深入了解NumPy 高级索引
Jul 24 Python
python Autopep8实现按PEP8风格自动排版Python代码
Mar 02 Python
python中tkinter窗口位置\坐标\大小等实现示例
Jul 09 #Python
Python2.x与3​​.x版本有哪些区别
Jul 09 #Python
浅谈keras中Dropout在预测过程中是否仍要起作用
Jul 09 #Python
在keras中对单一输入图像进行预测并返回预测结果操作
Jul 09 #Python
python求解汉诺塔游戏
Jul 09 #Python
Django中Aggregation聚合的基本使用方法
Jul 09 #Python
Python  word实现读取及导出代码解析
Jul 09 #Python
You might like
解析curl提交GET,POST,Cookie的简单方法
2013/06/29 PHP
php高清晰度无损图片压缩功能的实现代码
2018/12/09 PHP
js中的string.format函数代码
2020/08/11 Javascript
JQuery异步加载无限下拉框级联功能实现示例
2014/02/19 Javascript
引入autocomplete组件时JS报未结束字符串常量错误
2014/03/19 Javascript
jQuery中:last-child选择器用法实例
2014/12/31 Javascript
深入学习jQuery Validate表单验证
2016/01/18 Javascript
Bootstrap表单布局
2016/07/19 Javascript
jQuery鼠标悬停内容动画切换效果
2017/04/27 jQuery
Javascript中this关键字指向问题的测试与详解
2017/08/11 Javascript
jQuery实现的监听导航滚动置顶状态功能示例
2018/07/23 jQuery
详解用JS添加和删除class类名
2019/03/25 Javascript
使用Python判断IP地址合法性的方法实例
2014/03/13 Python
用实例分析Python中method的参数传递过程
2015/04/02 Python
django框架如何集成celery进行开发
2017/05/24 Python
Python实现输出程序执行进度百分比的方法
2017/09/16 Python
浅谈python3.6的tkinter运行问题
2019/02/22 Python
详解Python中的测试工具
2019/06/09 Python
python利用itertools生成密码字典并多线程撞库破解rar密码
2019/08/12 Python
python dumps和loads区别详解
2020/02/04 Python
Python tkinter模版代码实例
2020/02/05 Python
详解python变量与数据类型
2020/08/25 Python
python palywright库基本使用
2021/01/21 Python
html5 web本地存储将取代我们的cookie
2012/12/26 HTML / CSS
html5 Canvas画图教程(3)—canvas出现1像素线条模糊不清的原因
2013/01/09 HTML / CSS
整理HTML5中支持的URL编码与字符编码
2016/02/23 HTML / CSS
俄罗斯眼镜网: optikaworld
2016/07/31 全球购物
Collection和Collections的区别
2016/05/02 面试题
心理学专业毕业生推荐信范文
2013/11/21 职场文书
医院护士的求职信
2014/01/03 职场文书
表扬信格式
2014/01/12 职场文书
品牌转让协议书
2014/08/20 职场文书
基层党员群众路线教育实践活动个人对照检查材料思想汇报
2014/10/05 职场文书
2015年女职工工作总结
2015/05/15 职场文书
2015年教导处教学工作总结
2015/07/22 职场文书
MySQL去除密码登录告警的方法
2022/04/20 MySQL