keras分类之二分类实例(Cat and dog)


Posted in Python onJuly 09, 2020

1. 数据准备

在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。

2. 数据读取

# 存储数据集的目录
base_dir = 'E:/python learn/dog_and_cat/data/'
 
# 训练、验证数据集的目录
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
 
# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')
 
# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')
 
# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')
 
# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
 
print('total training cat images:', len(os.listdir(train_cats_dir))) 
print('total training dog images:', len(os.listdir(train_dogs_dir))) 
print('total validation cat images:', len(os.listdir(validation_cats_dir))) 
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))

3. 模型建立

# 搭建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
         input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
 
print(model.summary())
 
model.compile(loss='binary_crossentropy',
       optimizer=RMSprop(lr=1e-4),
       metrics=['acc'])

4. 模型训练

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
 
train_generator = train_datagen.flow_from_directory(
  train_dir, # target directory
  target_size=(150, 150), # resize图片
  batch_size=20,
  class_mode='binary'
)
 
validation_generator = test_datagen.flow_from_directory(
  validation_dir,
  target_size=(150, 150),
  batch_size=20,
  class_mode='binary'
)
 
for data_batch, labels_batch in train_generator:
  print('data batch shape:', data_batch.shape)
  print('labels batch shape:', labels_batch.shape)
  break
 
hist = model.fit_generator(
  train_generator,
  steps_per_epoch=100,
  epochs=10,
  validation_data=validation_generator,
  validation_steps=50
)
 
model.save('cats_and_dogs_small_1.h5')

5. 模型评估

acc = hist.history['acc']
val_acc = hist.history['val_acc']
loss = hist.history['loss']
val_loss = hist.history['val_loss']
 
epochs = range(len(acc))
 
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
 
plt.legend()
plt.figure()
 
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.legend()
plt.show()

6. 预测

imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg'
test_image = image.load_img(imagename, target_size = (150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = model.predict(test_image)
 
if result[0][0] == 1:
  prediction ='dog'
else:
  prediction ='cat'
  
print(prediction)

代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测

补充知识:keras 猫狗大战自搭网络以及vgg16应用

导入模块

import os
import numpy as np
import tensorflow as tf
import random
import seaborn as sns
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import RMSprop, Adam, SGD
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16, preprocess_input
 
from sklearn.model_selection import train_test_split

加载数据集

def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False):
  train_images= [data_dir + i for i in os.listdir(data_dir)]
  
  random.shuffle(train_images)
  
  def read_image(file_path, preprocess):
    img = image.load_img(file_path, target_size=(height, width))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    # if preprocess:
      # x = preprocess_input(x)
    return x
  
  def prep_data(images, proprocess):
    count = len(images)
    data = np.ndarray((count, height, width, channels), dtype = np.float32)
    
    for i, image_file in enumerate(images):
      image = read_image(image_file, preprocess)
      data[i] = image
    
    return data
  
  def read_labels(file_path):
    labels = []
    for i in file_path:
      label = 1 if 'dog' in i else 0
      labels.append(label)
    
    return labels
  
  X = prep_data(train_images, preprocess)
  labels = read_labels(train_images)
  
  assert X.shape[0] == len(labels)
  print("Train shape: {}".format(X.shape))
  return X, labels

读取数据集

# 读取图片
WIDTH = 150
HEIGHT = 150
CHANNELS = 3
X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)

查看数据集信息

# 统计y
sns.countplot(y)
 
# 显示图片
def show_cats_and_dogs(X, idx):
  plt.figure(figsize=(10,5), frameon=True)
  img = X[idx,:,:,::-1]
  img = img/255
  plt.imshow(img)
  plt.show()
 
 
for idx in range(0,3):
  show_cats_and_dogs(X, idx)
 
train_X = X[0:17500,:,:,:]
train_y = y[0:17500]
test_X = X[17500:25000,:,:,:]
test_y = y[17500:25000]
train_X.shape
test_X.shape

自定义神经网络层数

input_layer = Input((WIDTH, HEIGHT, CHANNELS))
# 第一层
z = input_layer
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)
 
z = Flatten()(z)
z = Dense(64)(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Dropout(0.5)(z)
z = Dense(1)(z)
z = Activation('sigmoid')(z)
 
model = Model(input_layer, z)
 
model.compile(
  optimizer = keras.optimizers.RMSprop(),
  loss = keras.losses.binary_crossentropy,
  metrics = [keras.metrics.binary_accuracy]
)
 
model.summary()

训练模型

history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True)
score = model.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

复用vgg16模型

def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)):
  vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape)
  
  for layer in vgg16.layers:
    layer.trainable = False
  last = vgg16.output
  # 后面加入自己的模型
  x = Flatten()(last)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(1, activation='sigmoid')(x)
  
  model = Model(inputs=vgg16.input, outputs=x)
  
  return model

编译模型

model_vgg16 = vgg16_model()
model_vgg16.summary()
model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])

训练模型

# 训练模型
history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True)
score = model_vgg16.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python迭代用法实例教程
Sep 08 Python
跟老齐学Python之变量和参数
Oct 10 Python
使用Python的Flask框架表单插件Flask-WTF实现Web登录验证
Jul 12 Python
Python常用内置模块之xml模块(详解)
May 23 Python
Python实现字符串反转的常用方法分析【4种方法】
Sep 30 Python
Python使用Matplotlib模块时坐标轴标题中文及各种特殊符号显示方法
May 04 Python
Python While循环语句实例演示及原理解析
Jan 03 Python
解决python中import文件夹下面py文件报错问题
Jun 01 Python
python 最简单的实现适配器设计模式的示例
Jun 30 Python
通过代码实例解析Pytest运行流程
Aug 20 Python
Python图像处理之图像拼接
Apr 28 Python
Pandas 数据编码的十种方法
Apr 20 Python
python中tkinter窗口位置\坐标\大小等实现示例
Jul 09 #Python
Python2.x与3​​.x版本有哪些区别
Jul 09 #Python
浅谈keras中Dropout在预测过程中是否仍要起作用
Jul 09 #Python
在keras中对单一输入图像进行预测并返回预测结果操作
Jul 09 #Python
python求解汉诺塔游戏
Jul 09 #Python
Django中Aggregation聚合的基本使用方法
Jul 09 #Python
Python  word实现读取及导出代码解析
Jul 09 #Python
You might like
php版微信支付api.mch.weixin.qq.com域名解析慢原因与解决方法
2016/10/12 PHP
Laravel框架处理用户的请求操作详解
2019/12/20 PHP
jQuery 点击图片跳转上一张或下一张功能的实现代码
2010/03/12 Javascript
IE JS无提示关闭窗口不提示的方法
2010/04/29 Javascript
Jquery常用技巧收集整理篇
2010/11/14 Javascript
js 3种归并操作的实例代码
2013/10/30 Javascript
jQuery实现点击按钮弹出可关闭层的浮动层插件
2015/09/19 Javascript
BootStrap中的表单大全
2016/09/07 Javascript
阿里云ecs服务器中安装部署node.js的步骤
2016/10/08 Javascript
require.js 加载 vue组件 r.js 合并压缩的实例
2016/10/14 Javascript
详解webpack解惑:require的五种用法
2017/06/09 Javascript
JavaScript生成指定范围随机数和随机序列的方法
2018/05/05 Javascript
解决vuejs 使用value in list 循环遍历数组出现警告的问题
2018/09/26 Javascript
在小程序中推送模板消息的实现方法
2019/07/22 Javascript
js实现百度淘宝搜索功能
2020/02/17 Javascript
在js文件中引入(调用)另一个js文件的三种方法
2020/09/11 Javascript
[34:10]Secret vs VG 2019国际邀请赛淘汰赛 败者组 BO3 第二场 8.24
2019/09/10 DOTA
Python脚本实现DNSPod DNS动态解析域名
2015/02/14 Python
python使用Matplotlib绘制分段函数
2018/09/25 Python
python2和python3的输入和输出区别介绍
2018/11/20 Python
python Selenium实现付费音乐批量下载的实现方法
2019/01/24 Python
Python第三方库face_recognition在windows上的安装过程
2019/05/03 Python
Django使用中间键实现csrf认证详解
2019/07/22 Python
python cumsum函数的具体使用
2019/07/29 Python
django-rest-swagger的优化使用方法
2019/08/29 Python
python计算n的阶乘的方法代码
2019/10/25 Python
python实现简单颜色识别程序
2020/02/19 Python
如何解决cmd运行python提示不是内部命令
2020/07/01 Python
详解HTML5中垂直上下居中的解决方案
2017/12/20 HTML / CSS
阿玛尼美国官方网站:Armani.com
2016/11/25 全球购物
精油和天然健康美容产品:Art Naturals
2018/01/27 全球购物
信息管理专业推荐信
2013/10/29 职场文书
领导证婚人证婚词
2014/01/13 职场文书
班级聚会策划书
2014/01/16 职场文书
庆七一主持词
2015/06/29 职场文书
会计入职心得体会
2016/01/22 职场文书