pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率


Posted in Python onJanuary 02, 2020

我用的是Anaconda3 ,用spyder编写pytorch的代码,在Anaconda3中新建了一个pytorch的虚拟环境(虚拟环境的名字就叫pytorch)。

以下内容仅供参考哦~~

1.首先打开Anaconda Prompt,然后输入activate pytorch,进入pytorch.

2.输入pip install tensorboardX,安装完成后,输入python,用from tensorboardX import SummaryWriter检验是否安装成功。如下图所示:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

3.安装完成之后,先给大家看一下我的文件夹,如下图:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

假设用LeNet5框架识别图像的准确率,LeNet.py代码如下:

import torch
import torch.nn as nn
from torchsummary import summary
from torch.autograd import Variable
import torch.nn.functional as F
 
class LeNet5(nn.Module): #定义网络 pytorch定义网络有很多方式,推荐以下方式,结构清晰 
 def __init__(self):  
  super(LeNet5,self).__init__()  
  self.conv1 = nn.Conv2d(3, 6, 5)
  self.conv2 = nn.Conv2d(6, 16, 5)
  self.fc1 = nn.Linear(16*5*5, 120)
  self.fc2 = nn.Linear(120, 84)
  self.fc3 = nn.Linear(84, 2)
 def forward(self,x): 
  # print(x.size())
  x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
  # print(x.size())
  x = F.max_pool2d(F.relu(self.conv2(x)), 2)
  # print(x.size()) 
  x = x.view(x.size()[0], -1)#全连接层均使用的nn.Linear()线性结构,输入输出维度均为一维,故需要把数据拉为一维  
  #print(x.size())
  x = F.relu(self.fc1(x)) 
  # print(x.size())
  x = F.relu(self.fc2(x))
  #print(x.size())
  x = self.fc3(x)
  # print(x.size())
  return x
 
net = LeNet5()
data_input = Variable(torch.randn(16,3,32,32))
print(data_input.size())
net(data_input)
print(summary(net,(3,32,32)))

示网络结构如下图:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

训练代码(LeNet_train_test.py)如下:

# -*- coding: utf-8 -*-
"""
Created on Wed Jan 2 15:53:33 2019
@author: Administrator
"""
 
import torch
import torch.nn as nn
import os
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets,transforms
import torchvision
import LeNet
from torch import optim
import time
from torch.optim import lr_scheduler
from tensorboardX import SummaryWriter
 
 
writer = SummaryWriter('LeNet5')
data_transforms = {
  'train':transforms.Compose([
    #transforms.Resize(56),
    transforms.RandomResizedCrop(32),#
    transforms.RandomHorizontalFlip(),#已给定的概率随即水平翻转给定的PIL图像
    transforms.ToTensor(),#将图片转换为Tensor,归一化至[0,1]
    transforms.Normalize([0.485,0.456,0.406],[0.229, 0.224, 0.225])#用平均值和标准偏差归一化张量图像
    ]),
  'val':transforms.Compose([
    #transforms.Resize(56),
    transforms.CenterCrop(32),
    transforms.ToTensor(),
    transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
  }
data_dir = 'bees vs ants' #样本文件夹
image_datasets = {x:datasets.ImageFolder(os.path.join(data_dir,x),
           data_transforms[x])
  for x in ['train','val']
  }
dataloaders = {x:torch.utils.data.DataLoader(image_datasets[x],batch_size =16,
            shuffle = True,num_workers = 0)
  for x in ['train','val']
  }
dataset_sizes = {x:len(image_datasets[x]) for x in ['train','val']}
class_names = image_datasets['train'].classes
 
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
def imshow(inp,title = None):
 #print(inp.size())
 inp = inp.numpy().transpose((1,2,0))
 mean = np.array([0.485,0.456,0.406])
 std = np.array([0.229,0.224,0.225])
 inp = std * inp + mean
 inp = np.clip(inp,0,1)
 plt.imshow(inp)
 if title is not None:
  plt.title(title)
 plt.pause(0.001)#为了让图像更新可以暂停一会
 
#Get a batch of training data
inputs,classes = next(iter(dataloaders['train']))
#print(inputs.size())
#print(inputs.size())
#Make a grid from batch 
out = torchvision.utils.make_grid(inputs)
#print(out.size())
imshow(out,title=[class_names[x] for x in classes])
 
def train_model(model,criterion,optimizer,scheduler,num_epochs = 25):
 since = time.time()
 
 # best_model_wts = copy.deepcopy(model.state_dict())
 best_acc = 0.0
 
 
 for epoch in range(num_epochs):
  print('Epoch {}/{}'.format(epoch,num_epochs - 1))
  print('-' * 10)
  
  #Each epoch has a training and validation phase
  for phase in ['train','val']:
   if phase == 'train':
    scheduler.step()
    model.train() #Set model to training mode
   else:
    model.eval()
   
   running_loss = 0.0
   running_corrects = 0
   
   #Iterate over data
   for inputs,labels in dataloaders[phase]:
    inputs = inputs.to(device)
    # print(inputs.size())
    labels = labels.to(device)
    #print(inputs.size())
    # print(labels.size())
    
    #zero the parameter gradients(参数梯度为零)
    optimizer.zero_grad()
    
    #forward
    #track history if only in train
    with torch.set_grad_enabled(phase == 'train'):
     outputs = model(inputs)
     _,preds = torch.max(outputs,1)
     loss = criterion(outputs,labels)
     
     #backward + optimize only if in training phase
     if phase == 'train':
      loss.backward()
      optimizer.step()
    
    #statistics
    running_loss += loss.item() * inputs.size(0)
    running_corrects += torch.sum(preds == labels.data)
   
   if phase == 'train':
    epoch_loss = running_loss / dataset_sizes[phase]
    epoch_acc = running_corrects.double() / dataset_sizes[phase]
    print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc))
    writer.add_scalar('Train/Loss', epoch_loss,epoch)
    writer.add_scalar('Train/Acc',epoch_acc,epoch)
   else:
    epoch_loss = running_loss / dataset_sizes[phase]
    epoch_acc = running_corrects.double() / dataset_sizes[phase]
    print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc))
    writer.add_scalar('Test/Loss', epoch_loss,epoch)
    writer.add_scalar('Test/Acc',epoch_acc,epoch)
    if epoch_acc > best_acc:
     best_acc = epoch_acc
  
  print()
 writer.close() 
 time_elapsed = time.time() - since
 print('Training complete in {:.0f}m {:.0f}s'.format(
   time_elapsed // 60 , time_elapsed % 60))
 print('Best val Acc: {:4f}'.format(best_acc))
 
 #load best model weights
 #model.load_state_dict()#best_model_wts)
 return model
 
 
def visualize_model(model,num_images = 6):
 was_training = model.training
 model.eval()
 
 
 images_so_far = 0
 plt.figure()
 
 with torch.no_grad():
  for i,(inputs,labels) in enumerate(dataloaders['val']):
   inputs = inputs.to(device)
   labels = labels.to(device)
   
   outputs = model(inputs)
   _,preds = torch.max(outputs,1)
   
   for j in range(inputs.size()[0]):
    images_so_far += 1
    ax = plt.subplot(num_images //2,2,images_so_far)
    ax.axis('off')
    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
    imshow(inputs.cpu().data[j])
    
    if images_so_far == num_images:
     model.train(mode = was_training)
     return 
    model.train(mode=was_training)
 
 
net = LeNet.LeNet5()
net = net.to(device)
 
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer,step_size = 7,gamma = 0.1)
 
net = train_model(net,criterion,optimizer,exp_lr_scheduler,num_epochs = 25)
 
 
 
#net1 = train_model(net,criterion,optimizer,exp_lr_scheduler,num_epochs = 25)
visualize_model(net)
 
 
plt.ioff()
plt.show()

最终的二分类结果为:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

样本图像是pytorch官网中介绍迁移学习时用到的,蚂蚁与蜜蜂的二分类图像,图像大小不一。LeNet5 的输入图像是32*32,所以进行分类时会损失一定的图像像素,导致识别率较低。

下面介绍显示loss和acc曲线,在以上训练代码中,writer = SummaryWriter('LeNet5'),表示在训练过程中会生成LeNet5文件夹,保存loss曲线和acc曲线的文件,如下图:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

首先解释一下这个文件夹为什么是1,因为我之前训练了很多次,在LeNet5文件夹下有很多1文件夹中这样的文件,待会用Anaconda Prompt来显示loss和acc的时候,它只识别一个文件,所以我就重新建了一个1文件夹,并将刚刚运行完毕的文件放到文件夹中。在LeNet_train_test.py中, writer.add_scalar('Train/Loss', epoch_loss,epoch)和

writer.add_scalar('Train/Acc',epoch_acc,epoch),这两行代码就是生成train数据集的loss和acc曲线,同理测试数据集亦是如此。

好啦,下面开始显示loss和acc:

1.打开Anaconda Prompt,再次进入pytorch虚拟环境,

2.输入tensorboard --logdir=C:\Users\Administrator\.spyder-py3\python\pytorch\LeNet\LeNet5\1,红色部分是来自上图文件夹的根目录,按回车键,会出现tensorboard的版本和一个网址,总体显示效果如下图:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

复制网址到浏览器中,在此处是复制:http://8AEYUVZ5PNOFCBX:6006 到浏览器中,

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

最终结果如下图:

pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

好啦,以上就是如何显示loss曲线和acc曲线以及LeNet5模型建立及训练的过程啦。

如果,文中有哪些地方描述的不恰当,请大家批评指正,不喜欢也不要喷我,好不好~~~

以上这篇pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中无限元素列表的实现方法
Aug 18 Python
跟老齐学Python之集合(set)
Sep 24 Python
Python判断两个list是否是父子集关系的实例
May 04 Python
无法使用pip命令安装python第三方库的原因及解决方法
Jun 12 Python
利用python GDAL库读写geotiff格式的遥感影像方法
Nov 29 Python
简单了解django orm中介模型
Jul 30 Python
详解如何在cmd命令窗口中搭建简单的python开发环境
Aug 29 Python
6行Python代码实现进度条效果(Progress、tqdm、alive-progress​​​​​​​和PySimpleGUI库)
Jan 06 Python
解决python pandas读取excel中多个不同sheet表格存在的问题
Jul 14 Python
Python如何读取、写入JSON数据
Jul 28 Python
python自动化调用百度api解决验证码
Apr 13 Python
Python绘制散点图之可视化神器pyecharts
Jul 07 Python
基于MSELoss()与CrossEntropyLoss()的区别详解
Jan 02 #Python
python使用SQLAlchemy操作MySQL
Jan 02 #Python
pytorch 实现cross entropy损失函数计算方式
Jan 02 #Python
Matplotlib scatter绘制散点图的方法实现
Jan 02 #Python
Python基础之函数基本用法与进阶详解
Jan 02 #Python
Python面向对象原理与基础语法详解
Jan 02 #Python
Pytorch 的损失函数Loss function使用详解
Jan 02 #Python
You might like
php多维数组去掉重复值示例分享
2014/03/02 PHP
thinkphp的静态缓存用法分析
2014/11/29 PHP
php 使用redis锁限制并发访问类示例
2016/11/02 PHP
javascript Demo模态窗口
2009/12/06 Javascript
javascript通过navigator.userAgent识别各种浏览器
2013/10/25 Javascript
深入理解JavaScript系列(34):设计模式之命令模式详解
2015/03/03 Javascript
Node.js中的流(Stream)介绍
2015/03/30 Javascript
JavaScript实现文字跟随鼠标特效
2015/08/06 Javascript
Bootstrap学习笔记之css样式设计(1)
2016/06/07 Javascript
AngularJS基础 ng-non-bindable 指令详细介绍
2016/08/02 Javascript
js中删除数组中的某一元素实例(无下标时)
2017/02/28 Javascript
关于Promise 异步编程的实例讲解
2017/09/01 Javascript
jQuery获取所有父级元素及同级元素及子元素的方法(推荐)
2018/01/21 jQuery
JS实现的JSON数组去重算法示例
2018/04/11 Javascript
Express的HTTP重定向到HTTPS的方法
2018/06/06 Javascript
一文快速详解前端框架 Vue 最强大的功能
2019/05/21 Javascript
详细讲解如何创建, 发布自己的 Vue UI 组件库
2019/05/29 Javascript
vue setInterval 定时器失效的解决方式
2020/07/30 Javascript
详解Python中的array数组模块相关使用
2016/07/05 Python
Python内存管理方式和垃圾回收算法解析
2017/11/11 Python
python logging.basicConfig不生效的原因及解决
2020/02/20 Python
django ListView的使用 ListView中获取url中的参数值方式
2020/03/27 Python
全球第二大家装零售商:Lowe’s
2018/01/13 全球购物
程序员经常用到的UNIX命令
2015/04/13 面试题
公司出纳岗位职责
2013/12/07 职场文书
计算机专业职业生涯规划范文
2014/01/19 职场文书
《画》教学反思
2014/04/14 职场文书
安全生产大检查方案
2014/05/07 职场文书
卫生系统先进事迹
2014/05/13 职场文书
团结就是力量演讲稿
2014/05/21 职场文书
国际商务专业毕业生自我鉴定2014
2014/09/27 职场文书
软件研发工程师岗位职责
2014/09/30 职场文书
幼儿园2015年度工作总结
2015/04/01 职场文书
安全生产会议制度
2015/08/06 职场文书
Nginx内网单机反向代理的实现
2021/11/07 Servers
ORACLE中dbms_output.put_line输出问题的解决过程
2022/06/28 Oracle