python pandas库中DataFrame对行和列的操作实例讲解


Posted in Python onJune 09, 2018

用pandas中的DataFrame时选取行或列:

import numpy as np
import pandas as pd
from pandas import Sereis, DataFrame
ser = Series(np.arange(3.))
data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型
data.w #选择表格中的'w'列,使用点属性,返回的是Series类型
data[['w']] #选择表格中的'w'列,返回的是DataFrame类型
data[['w','z']] #选择表格中的'w'、'z'列
data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后
data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
  #如果采用data[1]则报错
data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同
data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame, 
  #即末端是包含的 
data.irow(0) #取data的第一行
data.icol(0) #取data的第一列
data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)
ser.iget_value(0) #选取ser序列中的第一个
ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。
data.iloc[-1] #选取DataFrame最后一行,返回的是Series
data.iloc[-1:] #选取DataFrame最后一行,返回的是DataFrame
data.loc['a',['w','x']] #返回‘a'行'w'、'x'列,这种用于选取行索引列索引已知
data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取。

下面是简单的例子使用验证:

import pandas as pd
from pandas import Series, DataFrame
import numpy as np
data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e'])
data
Out[7]: 
  a b c d e
one  0 1 2 3 4
two  5 6 7 8 9
three 10 11 12 13 14
#对列的操作方法有如下几种
data.icol(0) #选取第一列
E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i]
 # -*- coding: utf-8 -*-
Out[35]: 
one  0
two  5
three 10
Name: a, dtype: int32
data['a']
Out[8]: 
one  0
two  5
three 10
Name: a, dtype: int32
data.a
Out[9]: 
one  0
two  5
three 10
Name: a, dtype: int32
data[['a']]
Out[10]: 
  a
one  0
two  5
three 10
data.ix[:,[0,1,2]] #不知道列名只知道列的位置时
Out[13]: 
  a b c
one  0 1 2
two  5 6 7
three 10 11 12
data.ix[1,[0]] #选择第2行第1列的值
Out[14]: 
a 5
Name: two, dtype: int32
data.ix[[1,2],[0]] #选择第2,3行第1列的值
Out[15]: 
  a
two  5
three 10
data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值
Out[17]: 
  a c
two  5 7
three 10 12
data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值
Out[29]: 
  c d
two 7 8
data.ix[data.a>5,3]
Out[30]: 
three 13
Name: d, dtype: int32
data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口
Out[31]: 
  d
three 13
data.ix[data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列
Out[32]: 
  c d
three 12 13
data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次
Out[33]: 
  c c c
three 12 12 12
#还可以行数或列数跟行名列名混着用
data.ix[1:3,['a','e']]
Out[24]: 
  a e
two  5 9
three 10 14
data.ix['one':'two',[2,1]]
Out[25]: 
  c b
one 2 1
two 7 6
data.ix[['one','three'],[2,2]]
Out[26]: 
  c c
one  2 2
three 12 12
data.ix['one':'three',['a','c']]
Out[27]: 
  a c
one  0 2
two  5 7
three 10 12
data.ix[['one','one'],['a','e','d','d','d']]
Out[28]: 
  a e d d d
one 0 4 3 3 3
one 0 4 3 3 3
#对行的操作有如下几种:
data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1]
Out[18]: 
  a b c d e
two 5 6 7 8 9
data.irow(1) #选取第二行
Out[36]: 
a 5
b 6
c 7
d 8
e 9
Name: two, dtype: int32
data.ix[1] #选择第2行
Out[20]: 
a 5
b 6
c 7
d 8
e 9
Name: two, dtype: int32
data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。
Out[22]: 
  a b c d e
one 0 1 2 3 4
two 5 6 7 8 9
data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。
Out[23]: 
  a b c d e
two  5 6 7 8 9
three 10 11 12 13 14
data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型
Out[11]: 
  a b c d e
three 10 11 12 13 14
data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型
Out[12]: 
  a b c d e
three 10 11 12 13 14
data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用
Out[13]: 
a 10
b 11
c 12
d 13
e 14
Name: three, dtype: int32
data.tail(1) #返回DataFrame中的最后一行
data.head(1) #返回DataFrame中的第一行

最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,

最笨的方法是直接给列索引重命名:

data6
  Unnamed: 0 high symbol time
date    
2016-11-01 0 3317.4 IF1611 18:10:44.8
2016-11-01 1 3317.4 IF1611 06:01:04.5
2016-11-01 2 3317.4 IF1611 07:46:25.5
2016-11-01 3 3318.4 IF1611 09:30:04.0
2016-11-01 4 3321.8 IF1611 09:31:04.0
data6.columns = list('abcd')
data6
 a b c d
date    
2016-11-01 0 3317.4 IF1611 18:10:44.8
2016-11-01 1 3317.4 IF1611 06:01:04.5
2016-11-01 2 3317.4 IF1611 07:46:25.5
2016-11-01 3 3318.4 IF1611 09:30:04.0
2016-11-01 4 3321.8 IF1611 09:31:04.0

重新命名后就可以用dataframe.drop([columns])来删除了,当然不用我这样全部给列名替换掉了,可以只是改变未命名的那个列,然后删除。不过这个用起来总是觉得有点low,有没有更好的方法呢,有,可以不去删除,直接:

data7 = data6.ix[:,1:]

这样既不改变原有数据,也达到了删除神烦列,当然我这里时第0列删除,可以根据实际选择所在的列删除之,至于这个原理,可以看下前面的对列的操作。

以上这篇python pandas库中DataFrame对行和列的操作实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python利用elaphe制作二维条形码实现代码
May 25 Python
Python脚本实现Web漏洞扫描工具
Oct 25 Python
Python urls.py的三种配置写法实例详解
Apr 28 Python
Python开发SQLite3数据库相关操作详解【连接,查询,插入,更新,删除,关闭等】
Jul 27 Python
Python Socket编程之多线程聊天室
Jul 28 Python
详解python的sorted函数对字典按key排序和按value排序
Aug 10 Python
详解python实现交叉验证法与留出法
Jul 11 Python
python并发编程多进程 互斥锁原理解析
Aug 20 Python
Django中的cookie和session
Aug 27 Python
Python在OpenCV里实现极坐标变换功能
Sep 02 Python
pytorch对梯度进行可视化进行梯度检查教程
Feb 04 Python
python利用递归方法实现求集合的幂集
Sep 07 Python
python pandas修改列属性的方法详解
Jun 09 #Python
numpy判断数值类型、过滤出数值型数据的方法
Jun 09 #Python
python中使用iterrows()对dataframe进行遍历的实例
Jun 09 #Python
pandas 小数位数 精度的处理方法
Jun 09 #Python
Numpy数据类型转换astype,dtype的方法
Jun 09 #Python
Python DataFrame设置/更改列表字段/元素类型的方法
Jun 09 #Python
浅谈DataFrame和SparkSql取值误区
Jun 09 #Python
You might like
Mac OS下配置PHP+MySql环境
2015/02/25 PHP
phpStudy2016 配置多个域名期间遇到的问题小结
2017/10/19 PHP
getElementsByTagName vs selectNodes效率 及兼容的selectNodes实现
2010/02/26 Javascript
js中eval详解
2012/03/30 Javascript
返回页面顶部top按钮通过锚点实现(自写)
2013/08/30 Javascript
jquery与js函数冲突的两种解决方法
2013/09/09 Javascript
Javascript遍历Html Table示例(包括内容和属性值)
2014/07/08 Javascript
javascript制作坦克大战全纪录(1)
2014/11/27 Javascript
JavaScript获取网页、浏览器、屏幕高度和宽度汇总
2014/12/18 Javascript
详解JavaScript中getFullYear()方法的使用
2015/06/10 Javascript
Bootstrap布局方式详解
2016/05/27 Javascript
AngularJS入门教程之双向绑定详解
2016/08/18 Javascript
zTree实现节点修改的实时刷新功能
2017/03/20 Javascript
微信小程序 es6-promise.js封装请求与处理异步进程
2017/06/12 Javascript
JavaScript实现QQ列表展开收缩扩展功能
2017/10/30 Javascript
JS变量提升及函数提升实例解析
2020/09/03 Javascript
Vue实现图书管理小案例
2020/12/03 Vue.js
利用Python获取操作系统信息实例
2016/09/02 Python
Python数据结构与算法之图的广度优先与深度优先搜索算法示例
2017/12/14 Python
Python学习笔记之视频人脸检测识别实例教程
2019/03/06 Python
django之对FileField字段的upload_to的设定方法
2019/07/28 Python
如何获取Python简单for循环索引
2019/11/21 Python
matplotlib 三维图表绘制方法简介
2020/09/20 Python
python如何获得list或numpy数组中最大元素对应的索引
2020/11/16 Python
浅析HTML5 meta viewport参数
2020/10/28 HTML / CSS
台湾线上百货零售购物平台:friDay购物
2017/08/18 全球购物
伊芙丽官方旗舰店:中国淑女一线品牌
2017/12/01 全球购物
Orvis官网:自1856年以来,优质服装、飞钓装备等
2018/12/17 全球购物
eBay荷兰购物网站:eBay.nl
2020/06/26 全球购物
中国电子产品批发商/跨境电商/外贸网:Sunsky-online
2020/04/20 全球购物
学校安全责任书
2014/04/14 职场文书
中小学生学籍证明
2014/10/25 职场文书
学习经验交流会总结
2015/11/02 职场文书
团队拓展训练心得体会
2016/01/12 职场文书
《伯牙绝弦》教学反思
2016/02/16 职场文书
PostgreSQL并行计算算法及参数强制并行度设置方法
2022/04/06 PostgreSQL