python pandas库中DataFrame对行和列的操作实例讲解


Posted in Python onJune 09, 2018

用pandas中的DataFrame时选取行或列:

import numpy as np
import pandas as pd
from pandas import Sereis, DataFrame
ser = Series(np.arange(3.))
data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型
data.w #选择表格中的'w'列,使用点属性,返回的是Series类型
data[['w']] #选择表格中的'w'列,返回的是DataFrame类型
data[['w','z']] #选择表格中的'w'、'z'列
data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后
data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
  #如果采用data[1]则报错
data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同
data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame, 
  #即末端是包含的 
data.irow(0) #取data的第一行
data.icol(0) #取data的第一列
data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)
ser.iget_value(0) #选取ser序列中的第一个
ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。
data.iloc[-1] #选取DataFrame最后一行,返回的是Series
data.iloc[-1:] #选取DataFrame最后一行,返回的是DataFrame
data.loc['a',['w','x']] #返回‘a'行'w'、'x'列,这种用于选取行索引列索引已知
data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取。

下面是简单的例子使用验证:

import pandas as pd
from pandas import Series, DataFrame
import numpy as np
data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e'])
data
Out[7]: 
  a b c d e
one  0 1 2 3 4
two  5 6 7 8 9
three 10 11 12 13 14
#对列的操作方法有如下几种
data.icol(0) #选取第一列
E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i]
 # -*- coding: utf-8 -*-
Out[35]: 
one  0
two  5
three 10
Name: a, dtype: int32
data['a']
Out[8]: 
one  0
two  5
three 10
Name: a, dtype: int32
data.a
Out[9]: 
one  0
two  5
three 10
Name: a, dtype: int32
data[['a']]
Out[10]: 
  a
one  0
two  5
three 10
data.ix[:,[0,1,2]] #不知道列名只知道列的位置时
Out[13]: 
  a b c
one  0 1 2
two  5 6 7
three 10 11 12
data.ix[1,[0]] #选择第2行第1列的值
Out[14]: 
a 5
Name: two, dtype: int32
data.ix[[1,2],[0]] #选择第2,3行第1列的值
Out[15]: 
  a
two  5
three 10
data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值
Out[17]: 
  a c
two  5 7
three 10 12
data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值
Out[29]: 
  c d
two 7 8
data.ix[data.a>5,3]
Out[30]: 
three 13
Name: d, dtype: int32
data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口
Out[31]: 
  d
three 13
data.ix[data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列
Out[32]: 
  c d
three 12 13
data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次
Out[33]: 
  c c c
three 12 12 12
#还可以行数或列数跟行名列名混着用
data.ix[1:3,['a','e']]
Out[24]: 
  a e
two  5 9
three 10 14
data.ix['one':'two',[2,1]]
Out[25]: 
  c b
one 2 1
two 7 6
data.ix[['one','three'],[2,2]]
Out[26]: 
  c c
one  2 2
three 12 12
data.ix['one':'three',['a','c']]
Out[27]: 
  a c
one  0 2
two  5 7
three 10 12
data.ix[['one','one'],['a','e','d','d','d']]
Out[28]: 
  a e d d d
one 0 4 3 3 3
one 0 4 3 3 3
#对行的操作有如下几种:
data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1]
Out[18]: 
  a b c d e
two 5 6 7 8 9
data.irow(1) #选取第二行
Out[36]: 
a 5
b 6
c 7
d 8
e 9
Name: two, dtype: int32
data.ix[1] #选择第2行
Out[20]: 
a 5
b 6
c 7
d 8
e 9
Name: two, dtype: int32
data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。
Out[22]: 
  a b c d e
one 0 1 2 3 4
two 5 6 7 8 9
data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。
Out[23]: 
  a b c d e
two  5 6 7 8 9
three 10 11 12 13 14
data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型
Out[11]: 
  a b c d e
three 10 11 12 13 14
data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型
Out[12]: 
  a b c d e
three 10 11 12 13 14
data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用
Out[13]: 
a 10
b 11
c 12
d 13
e 14
Name: three, dtype: int32
data.tail(1) #返回DataFrame中的最后一行
data.head(1) #返回DataFrame中的第一行

最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,

最笨的方法是直接给列索引重命名:

data6
  Unnamed: 0 high symbol time
date    
2016-11-01 0 3317.4 IF1611 18:10:44.8
2016-11-01 1 3317.4 IF1611 06:01:04.5
2016-11-01 2 3317.4 IF1611 07:46:25.5
2016-11-01 3 3318.4 IF1611 09:30:04.0
2016-11-01 4 3321.8 IF1611 09:31:04.0
data6.columns = list('abcd')
data6
 a b c d
date    
2016-11-01 0 3317.4 IF1611 18:10:44.8
2016-11-01 1 3317.4 IF1611 06:01:04.5
2016-11-01 2 3317.4 IF1611 07:46:25.5
2016-11-01 3 3318.4 IF1611 09:30:04.0
2016-11-01 4 3321.8 IF1611 09:31:04.0

重新命名后就可以用dataframe.drop([columns])来删除了,当然不用我这样全部给列名替换掉了,可以只是改变未命名的那个列,然后删除。不过这个用起来总是觉得有点low,有没有更好的方法呢,有,可以不去删除,直接:

data7 = data6.ix[:,1:]

这样既不改变原有数据,也达到了删除神烦列,当然我这里时第0列删除,可以根据实际选择所在的列删除之,至于这个原理,可以看下前面的对列的操作。

以上这篇python pandas库中DataFrame对行和列的操作实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python发送伪造的arp请求
Jan 09 Python
python中redis的安装和使用
Dec 04 Python
Python 自动登录淘宝并保存登录信息的方法
Sep 04 Python
Python实现图像的垂直投影示例
Jan 17 Python
Django User 模块之 AbstractUser 扩展详解
Mar 11 Python
python实现批量命名照片
Jun 18 Python
python按顺序重命名文件并分类转移到各个文件夹中的实现代码
Jul 21 Python
Python matplotlib图例放在外侧保存时显示不完整问题解决
Jul 28 Python
Python实现快速大文件比较代码解析
Sep 04 Python
python关于倒排列的知识点总结
Oct 13 Python
Python如何急速下载第三方库详解
Nov 02 Python
Pandas||过滤缺失数据||pd.dropna()函数的用法说明
May 14 Python
python pandas修改列属性的方法详解
Jun 09 #Python
numpy判断数值类型、过滤出数值型数据的方法
Jun 09 #Python
python中使用iterrows()对dataframe进行遍历的实例
Jun 09 #Python
pandas 小数位数 精度的处理方法
Jun 09 #Python
Numpy数据类型转换astype,dtype的方法
Jun 09 #Python
Python DataFrame设置/更改列表字段/元素类型的方法
Jun 09 #Python
浅谈DataFrame和SparkSql取值误区
Jun 09 #Python
You might like
php构造函数实例讲解
2013/11/13 PHP
php的declare控制符和ticks教程(附示例)
2014/03/21 PHP
php多线程实现方法及用法实例详解
2015/10/26 PHP
PDO::commit讲解
2019/01/27 PHP
PHP join()函数用法与实例讲解
2019/03/11 PHP
javascript使用eval或者new Function进行语法检查
2010/10/16 Javascript
jQuery的初始化与对象构建之浅析
2011/04/12 Javascript
利用CSS、JavaScript及Ajax实现高效的图片预加载
2013/10/16 Javascript
js数组去重的常用方法总结
2014/01/24 Javascript
JavaScript二维数组实现的省市联动菜单
2014/05/08 Javascript
js通过iframe加载外部网页的实现代码
2015/04/05 Javascript
Bootstrap媒体对象的实现
2016/05/01 Javascript
JavaScript中获取时间的函数集
2016/08/16 Javascript
浅谈JS函数定义方式的区别
2016/10/30 Javascript
微信小程序 特效菜单抽屉效果实例代码
2017/01/11 Javascript
JQuery Dialog对话框 不能通过Esc关闭的原因分析及解决办法
2017/01/18 Javascript
浅谈ng-zorro使用心得
2018/12/03 Javascript
[01:06:25]Secret vs Liquid 2018国际邀请赛淘汰赛BO3 第一场 8.25
2018/08/29 DOTA
Python中time模块和datetime模块的用法示例
2016/02/28 Python
python如何重载模块实例解析
2018/01/25 Python
python opencv之分水岭算法示例
2018/02/24 Python
python中datetime模块中strftime/strptime函数的使用
2018/07/03 Python
python3.6中@property装饰器的使用方法示例
2019/08/17 Python
python常用数据重复项处理方法
2019/11/22 Python
TensorFlow MNIST手写数据集的实现方法
2020/02/05 Python
Python中Yield的基本用法
2020/10/18 Python
Django用户认证系统如何实现自定义
2020/11/12 Python
洲际酒店集团英国官网:IHG英国
2019/07/10 全球购物
科颜氏法国官网:Kiehl’s法国
2019/08/20 全球购物
市场营销职业生涯规划书范文
2014/01/12 职场文书
银行求职自荐信范文
2015/03/04 职场文书
看雷锋电影观后感
2015/06/10 职场文书
大学生读书笔记大全
2015/07/01 职场文书
2015年新教师个人工作总结
2015/10/14 职场文书
python单元测试之pytest的使用
2021/06/07 Python
Java框架入门之简单介绍SpringBoot框架
2021/06/18 Java/Android