对python .txt文件读取及数据处理方法总结


Posted in Python onApril 23, 2018

1、处理包含数据的文件

最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误:

TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3')

作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了。

总结如下:

(1)出现此问题的原因是:目的是想计算两个数组间的差值,但数组中的元素不是数据类型(float或int等),而是str类型的。

(2)解决方法:在为空数组添加数据过程中,将每个数据强制转化为float型。

如将“character.append(dataSet[i][:-1])”修改为“ character.append([float(tk) for tk in dataSet[i][:-1]])”

现将利用Python读取txt文件的过程总结如下:

python版本为python3.6

(1)函数定义,存放于Function.py文件中:

from numpy import *
import random
#读取数据函数,返回list类型的训练数据集和测试数据集
def loadData(fileName): 
 trainingData=[]
 testData=[]
 with open(fileName) as txtData:
 lines=txtData.readlines()
 for line in lines:
  lineData=line.strip().split(',') #去除空白和逗号“,”
  if random.random()<0.7:  #数据集分割比例
  trainingData.append(lineData) #训练数据集
  else:
  testData.append(lineData) #测试数据集
 return trainingData,testData
#输入数据为list类型,分割数据集,分割为特征和标签两部分,返回数据为np.narray类型
def splitData(dataSet): 
 character=[]
 label=[]
 for i in range(len(dataSet)):
 character.append([float(tk) for tk in dataSet[i][:-1]])
 label.append(dataSet[i][-1])
 return array(character),array(label)

(2)实现两个数组间的减法,存放于main.py文件中:

#__author__=='qustl_000'
#-*- coding: utf-8 -*-
import numpy as np
import Function
fileName="1.txt"
trainingData,testData=Function.loadData(fileName)
trainingCharacter,trainingLabel=Function.splitData(trainingData)
testCharacter,testLabel=Function.splitData(testData)
diff1=np.tile(testCharacter[0],(len(trainingCharacter),1))-trainingCharacter
print('测试数据集的一条数据,扩充到与训练数据集同维:')
print(np.tile(testCharacter[0],(len(trainingCharacter),1)))
print('训练数据集:')
print(trainingCharacter)
print('作差后的结果:')
print(diff1)

(3)运行结果:

测试数据集的一条数据,扩充到与训练数据集同维:
[[ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]]
训练数据集:
[[ 1.5 40. ]
 [ 1.5 50. ]
 [ 1.6 40. ]
 [ 1.6 50. ]
 [ 1.6 60. ]
 [ 1.6 70. ]
 [ 1.7 60. ]
 [ 1.7 70. ]
 [ 1.7 80. ]
 [ 1.8 60. ]
 [ 1.8 80. ]
 [ 1.8 90. ]
 [ 1.9 90. ]]
作差后的结果:
[[ 0. 20. ]
 [ 0. 10. ]
 [ -0.1 20. ]
 [ -0.1 10. ]
 [ -0.1 0. ]
 [ -0.1 -10. ]
 [ -0.2 0. ]
 [ -0.2 -10. ]
 [ -0.2 -20. ]
 [ -0.3 0. ]
 [ -0.3 -20. ]
 [ -0.3 -30. ]
 [ -0.4 -30. ]]

数据集如下:

1.5,40,thin
1.5,50,fat
1.5,60,fat
1.6,40,thin
1.6,50,thin
1.6,60,fat
1.6,70,fat
1.7,50,thin
1.7,60,thin
1.7,70,fat
1.7,80,fat
1.8,60,thin
1.8,70,thin
1.8,80,fat
1.8,90,fat
1.9,80,thin
1.9,90,fat

2、处理文本文件,如情感识别类的文件

在进行文本的情感分类时,从电影评论数据集网站上下载数据集后,发现数据集中存在许多不需要的符号。截取部分包含多余字符的数据如下:

对python .txt文件读取及数据处理方法总结

下载数据集后,所有txt文件存放在两个文件夹:“neg”(包含消极评论)和“pos”(包含积极地评论)中。

两者的存放目录如下:“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken”。后面需要用到文件路径,此路径可根据自己存放目录修改。

主要涉及到的python操作有:多余字符的删除、文件夹中多文件的操作。

2.1 多余字符的删除

首先,我们要删除多余的符号,获得干净的数据。

经过查找资料,知道删除一条文本数据中不需要的符号,可以通过re.sub(chara,newChara,data)函数实现,其中chara是需要删除的字符,newChara是删除字符后相应位置的替换字符,data是需要操作的数据。比如下面的代码,指的是删除lines中包含的前面列出的字符,并用空白替换:

lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)

2.2 python对多文件的操作

下面的程序中,pathDirPos指的是所有积极评论的txt文件所在的目录,在此指的是“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken\pos”。child就是获得的每个txt文件全名。

for allDir in pathDirPos:
 child = os.path.join('%s' % allDir)

2.3 电影评论数据集预处理

下面给出对于电影评论数据集的预处理程序(python3.6).

'''获取数据,并去除数据中的多余符号,返回list类型的数据集'''
def loadData(pathDirPos,pathDirNeg):
 posAllData = [] # 积极评论
 negAllData = [] # 消极评论
 # 积极评论
 for allDir in pathDirPos:
 lineDataPos = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/pos/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataPos.append(strc)
  posAllData.append(lineDataPos)
 # 消极评论
 for allDir in pathDirNeg:
 lineDataNeg = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/neg/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataNeg.append(strc)
  negAllData.append(lineDataNeg)
 return posAllData,negAllData
'''划分数据集,将数据集划分为训练数据和测试数据,参数splitPara为分割比例'''
def splitDataSet(pathDirPos,pathDirNeg,splitPara):
 trainingData=[]
 testData=[]
 traingLabel=[]
 testLabel=[]
 posData,negData=loadData(pathDirPos,pathDirNeg)
 pos_len=len(posData)
 neg_len=len(negData)
 #操作积极评论数据
 for i in range(pos_len):
 if(random.random()<splitPara):
  trainingData.append(posData[i])
  traingLabel.append(1)
 else:
  testData.append(posData[i])
  testLabel.append(1)
 for j in range(neg_len):
 if(random.random()<splitPara):
  trainingData.append(negData[j])
  traingLabel.append(0)
 else:
  testData.append(negData[j])
  testLabel.append(0)
 return trainingData,traingLabel,testData,testLabel

以上这篇对python .txt文件读取及数据处理方法总结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python获取糗百图片代码实例
Dec 18 Python
python下如何查询CS反恐精英的服务器信息
Jan 17 Python
Python实现自动上京东抢手机
Feb 06 Python
Python GUI布局尺寸适配方法
Oct 11 Python
对python中的six.moves模块的下载函数urlretrieve详解
Dec 19 Python
python 画二维、三维点之间的线段实现方法
Jul 07 Python
使用Python制作表情包实现换脸功能
Jul 19 Python
详解Python中正则匹配TAB及空格的小技巧
Jul 26 Python
详解Python中的分支和循环结构
Feb 11 Python
Python request操作步骤及代码实例
Apr 13 Python
Python pymysql模块安装并操作过程解析
Oct 13 Python
python asyncio 协程库的使用
Jan 21 Python
python 读文件,然后转化为矩阵的实例
Apr 23 #Python
python读文件保存到字典,修改字典并写入新文件的实例
Apr 23 #Python
Python 将pdf转成图片的方法
Apr 23 #Python
利用python将pdf输出为txt的实例讲解
Apr 23 #Python
Go/Python/Erlang编程语言对比分析及示例代码
Apr 23 #Python
Python 3.6 读取并操作文件内容的实例
Apr 23 #Python
Python 循环语句之 while,for语句详解
Apr 23 #Python
You might like
php登录超时检测功能实例详解
2017/03/21 PHP
php 生成加密公钥加密私钥实例详解
2017/06/16 PHP
使用laravel指定日志文件记录任意日志
2019/10/17 PHP
Laravel实现批量更新多条数据
2020/04/06 PHP
用JavaScrpt实现文件夹简单轻松加密的实现方法图文
2008/09/08 Javascript
js 页面传参数时 参数值含特殊字符的问题
2009/12/13 Javascript
基于jquery实现图片广告轮换效果代码
2011/07/07 Javascript
js计算字符串长度包含的中文是utf8格式
2013/10/15 Javascript
Javasipt:操作radio标签详解
2013/12/30 Javascript
理解JavaScript中Promise的使用
2016/01/18 Javascript
JavaScript该如何学习 怎样轻松学习JavaScript
2017/06/12 Javascript
Angular 4中如何显示内容的CSS样式示例代码
2017/11/06 Javascript
angularjs 获取默认选中的单选按钮的value方法
2018/02/28 Javascript
JS实现页面数据懒加载
2020/02/13 Javascript
python将多个文本文件合并为一个文本的代码(便于搜索)
2011/03/13 Python
Python中使用Tkinter模块创建GUI程序实例
2015/01/14 Python
从Python程序中访问Java类的简单示例
2015/04/20 Python
浅谈Django自定义模板标签template_tags的用处
2017/12/20 Python
python3安装pip3(install pip3 for python 3.x)
2018/04/03 Python
python selenium操作cookie的实现
2020/03/18 Python
Pytorch 使用不同版本的cuda的方法步骤
2020/04/02 Python
美国最便宜的旅游网站:CheapTickets
2017/07/09 全球购物
美国最大婚纱连锁店运营商:David’s Bridal
2019/03/12 全球购物
The Hut英国:英国领先的豪华在线百货商店
2019/07/26 全球购物
专科毕业生学习生活的自我评价
2013/10/26 职场文书
暑期实践思想汇报
2014/01/06 职场文书
家具促销活动方案
2014/02/16 职场文书
房产公证委托书范本
2014/09/20 职场文书
因身体原因离职的辞职信范文
2015/05/12 职场文书
焦点访谈观后感
2015/06/11 职场文书
《唯一的听众》教学反思
2016/02/18 职场文书
忆童年!用Python实现愤怒的小鸟游戏
2021/06/07 Python
CSS3 Tab动画实例之背景切换动态效果
2021/08/23 HTML / CSS
《勇者辞职不干了》上卷BD发售宣传CM公开
2022/04/08 日漫
Typescript类型系统FLOW静态检查基本规范
2022/05/25 Javascript