对python .txt文件读取及数据处理方法总结


Posted in Python onApril 23, 2018

1、处理包含数据的文件

最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误:

TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3')

作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了。

总结如下:

(1)出现此问题的原因是:目的是想计算两个数组间的差值,但数组中的元素不是数据类型(float或int等),而是str类型的。

(2)解决方法:在为空数组添加数据过程中,将每个数据强制转化为float型。

如将“character.append(dataSet[i][:-1])”修改为“ character.append([float(tk) for tk in dataSet[i][:-1]])”

现将利用Python读取txt文件的过程总结如下:

python版本为python3.6

(1)函数定义,存放于Function.py文件中:

from numpy import *
import random
#读取数据函数,返回list类型的训练数据集和测试数据集
def loadData(fileName): 
 trainingData=[]
 testData=[]
 with open(fileName) as txtData:
 lines=txtData.readlines()
 for line in lines:
  lineData=line.strip().split(',') #去除空白和逗号“,”
  if random.random()<0.7:  #数据集分割比例
  trainingData.append(lineData) #训练数据集
  else:
  testData.append(lineData) #测试数据集
 return trainingData,testData
#输入数据为list类型,分割数据集,分割为特征和标签两部分,返回数据为np.narray类型
def splitData(dataSet): 
 character=[]
 label=[]
 for i in range(len(dataSet)):
 character.append([float(tk) for tk in dataSet[i][:-1]])
 label.append(dataSet[i][-1])
 return array(character),array(label)

(2)实现两个数组间的减法,存放于main.py文件中:

#__author__=='qustl_000'
#-*- coding: utf-8 -*-
import numpy as np
import Function
fileName="1.txt"
trainingData,testData=Function.loadData(fileName)
trainingCharacter,trainingLabel=Function.splitData(trainingData)
testCharacter,testLabel=Function.splitData(testData)
diff1=np.tile(testCharacter[0],(len(trainingCharacter),1))-trainingCharacter
print('测试数据集的一条数据,扩充到与训练数据集同维:')
print(np.tile(testCharacter[0],(len(trainingCharacter),1)))
print('训练数据集:')
print(trainingCharacter)
print('作差后的结果:')
print(diff1)

(3)运行结果:

测试数据集的一条数据,扩充到与训练数据集同维:
[[ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]]
训练数据集:
[[ 1.5 40. ]
 [ 1.5 50. ]
 [ 1.6 40. ]
 [ 1.6 50. ]
 [ 1.6 60. ]
 [ 1.6 70. ]
 [ 1.7 60. ]
 [ 1.7 70. ]
 [ 1.7 80. ]
 [ 1.8 60. ]
 [ 1.8 80. ]
 [ 1.8 90. ]
 [ 1.9 90. ]]
作差后的结果:
[[ 0. 20. ]
 [ 0. 10. ]
 [ -0.1 20. ]
 [ -0.1 10. ]
 [ -0.1 0. ]
 [ -0.1 -10. ]
 [ -0.2 0. ]
 [ -0.2 -10. ]
 [ -0.2 -20. ]
 [ -0.3 0. ]
 [ -0.3 -20. ]
 [ -0.3 -30. ]
 [ -0.4 -30. ]]

数据集如下:

1.5,40,thin
1.5,50,fat
1.5,60,fat
1.6,40,thin
1.6,50,thin
1.6,60,fat
1.6,70,fat
1.7,50,thin
1.7,60,thin
1.7,70,fat
1.7,80,fat
1.8,60,thin
1.8,70,thin
1.8,80,fat
1.8,90,fat
1.9,80,thin
1.9,90,fat

2、处理文本文件,如情感识别类的文件

在进行文本的情感分类时,从电影评论数据集网站上下载数据集后,发现数据集中存在许多不需要的符号。截取部分包含多余字符的数据如下:

对python .txt文件读取及数据处理方法总结

下载数据集后,所有txt文件存放在两个文件夹:“neg”(包含消极评论)和“pos”(包含积极地评论)中。

两者的存放目录如下:“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken”。后面需要用到文件路径,此路径可根据自己存放目录修改。

主要涉及到的python操作有:多余字符的删除、文件夹中多文件的操作。

2.1 多余字符的删除

首先,我们要删除多余的符号,获得干净的数据。

经过查找资料,知道删除一条文本数据中不需要的符号,可以通过re.sub(chara,newChara,data)函数实现,其中chara是需要删除的字符,newChara是删除字符后相应位置的替换字符,data是需要操作的数据。比如下面的代码,指的是删除lines中包含的前面列出的字符,并用空白替换:

lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)

2.2 python对多文件的操作

下面的程序中,pathDirPos指的是所有积极评论的txt文件所在的目录,在此指的是“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken\pos”。child就是获得的每个txt文件全名。

for allDir in pathDirPos:
 child = os.path.join('%s' % allDir)

2.3 电影评论数据集预处理

下面给出对于电影评论数据集的预处理程序(python3.6).

'''获取数据,并去除数据中的多余符号,返回list类型的数据集'''
def loadData(pathDirPos,pathDirNeg):
 posAllData = [] # 积极评论
 negAllData = [] # 消极评论
 # 积极评论
 for allDir in pathDirPos:
 lineDataPos = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/pos/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataPos.append(strc)
  posAllData.append(lineDataPos)
 # 消极评论
 for allDir in pathDirNeg:
 lineDataNeg = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/neg/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataNeg.append(strc)
  negAllData.append(lineDataNeg)
 return posAllData,negAllData
'''划分数据集,将数据集划分为训练数据和测试数据,参数splitPara为分割比例'''
def splitDataSet(pathDirPos,pathDirNeg,splitPara):
 trainingData=[]
 testData=[]
 traingLabel=[]
 testLabel=[]
 posData,negData=loadData(pathDirPos,pathDirNeg)
 pos_len=len(posData)
 neg_len=len(negData)
 #操作积极评论数据
 for i in range(pos_len):
 if(random.random()<splitPara):
  trainingData.append(posData[i])
  traingLabel.append(1)
 else:
  testData.append(posData[i])
  testLabel.append(1)
 for j in range(neg_len):
 if(random.random()<splitPara):
  trainingData.append(negData[j])
  traingLabel.append(0)
 else:
  testData.append(negData[j])
  testLabel.append(0)
 return trainingData,traingLabel,testData,testLabel

以上这篇对python .txt文件读取及数据处理方法总结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单介绍Python中的filter和lambda函数的使用
Apr 07 Python
Python模拟自动存取款机的查询、存取款、修改密码等操作
Sep 02 Python
用Python实现筛选文件脚本的方法
Oct 27 Python
python实现简单名片管理系统
Nov 30 Python
Python常用模块os.path之文件及路径操作方法
Dec 03 Python
Tensorflow获取张量Tensor的具体维数实例
Jan 19 Python
python 使用递归实现打印一个数字的每一位示例
Feb 27 Python
Python MySQL 日期时间格式化作为参数的操作
Mar 02 Python
Python使用进程Process模块管理资源
Mar 05 Python
Python使用sqlite3模块内置数据库
May 07 Python
windows10在visual studio2019下配置使用openCV4.3.0
Jul 14 Python
Python如何利用正则表达式爬取网页信息及图片
Apr 17 Python
python 读文件,然后转化为矩阵的实例
Apr 23 #Python
python读文件保存到字典,修改字典并写入新文件的实例
Apr 23 #Python
Python 将pdf转成图片的方法
Apr 23 #Python
利用python将pdf输出为txt的实例讲解
Apr 23 #Python
Go/Python/Erlang编程语言对比分析及示例代码
Apr 23 #Python
Python 3.6 读取并操作文件内容的实例
Apr 23 #Python
Python 循环语句之 while,for语句详解
Apr 23 #Python
You might like
《PHP边学边教》(02.Apache+PHP环境配置――上篇)
2006/12/13 PHP
真正根据utf8编码的规律来进行截取字符串的函数(utf8版sub_str )
2012/10/24 PHP
使用PHP导出Redis数据到另一个Redis中的代码
2014/03/12 PHP
php实例分享之通过递归实现删除目录下的所有文件详解
2014/05/15 PHP
jquery和javascript的区别(常用方法比较)
2013/07/04 Javascript
jquery中trigger()无法触发hover事件的解决方法
2015/05/07 Javascript
微信小程序(应用号)开发新闻客户端实例
2016/10/24 Javascript
angular十大常见问题
2017/03/07 Javascript
jQuery轻松实现无缝轮播效果
2017/03/22 jQuery
bootstrap timepicker在angular中取值并转化为时间戳
2017/06/13 Javascript
详解vue中computed 和 watch的异同
2017/06/30 Javascript
vue 虚拟dom的patch源码分析
2018/03/01 Javascript
一种angular的方法级的缓存注解(装饰器)
2018/03/13 Javascript
bootstrap table插件动态加载表头
2019/07/19 Javascript
Vue分页效果与购物车功能
2019/12/13 Javascript
Vue 的双向绑定原理与用法揭秘
2020/05/06 Javascript
ant design的table组件实现全选功能以及自定义分页
2020/11/17 Javascript
python基础教程之popen函数操作其它程序的输入和输出示例
2014/02/10 Python
使用Python编写基于DHT协议的BT资源爬虫
2016/03/19 Python
Python中遍历列表的方法总结
2019/06/27 Python
详解用Python为直方图绘制拟合曲线的两种方法
2019/08/21 Python
python+selenium 脚本实现每天自动登记的思路详解
2020/03/11 Python
Python自动化测试笔试面试题精选
2020/03/12 Python
使用Python将语音转换为文本的方法
2020/08/10 Python
全网最细 Python 格式化输出用法讲解(推荐)
2021/01/18 Python
python多线程爬取西刺代理的示例代码
2021/01/30 Python
医学护理系毕业生求职信
2013/10/01 职场文书
管理工程专业求职信
2014/08/10 职场文书
工伤死亡理赔协议书
2014/10/20 职场文书
旗帜观后感
2015/06/08 职场文书
高中同学会致辞
2015/08/01 职场文书
2016先进集体事迹材料范文
2016/02/25 职场文书
2016年庆祝六一儿童节活动总结
2016/04/06 职场文书
2019自荐信范文集锦!
2019/07/03 职场文书
Python Socket编程详解
2021/04/25 Python
nginx+lua单机上万并发的实现
2021/05/31 Servers