对python .txt文件读取及数据处理方法总结


Posted in Python onApril 23, 2018

1、处理包含数据的文件

最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误:

TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3')

作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了。

总结如下:

(1)出现此问题的原因是:目的是想计算两个数组间的差值,但数组中的元素不是数据类型(float或int等),而是str类型的。

(2)解决方法:在为空数组添加数据过程中,将每个数据强制转化为float型。

如将“character.append(dataSet[i][:-1])”修改为“ character.append([float(tk) for tk in dataSet[i][:-1]])”

现将利用Python读取txt文件的过程总结如下:

python版本为python3.6

(1)函数定义,存放于Function.py文件中:

from numpy import *
import random
#读取数据函数,返回list类型的训练数据集和测试数据集
def loadData(fileName): 
 trainingData=[]
 testData=[]
 with open(fileName) as txtData:
 lines=txtData.readlines()
 for line in lines:
  lineData=line.strip().split(',') #去除空白和逗号“,”
  if random.random()<0.7:  #数据集分割比例
  trainingData.append(lineData) #训练数据集
  else:
  testData.append(lineData) #测试数据集
 return trainingData,testData
#输入数据为list类型,分割数据集,分割为特征和标签两部分,返回数据为np.narray类型
def splitData(dataSet): 
 character=[]
 label=[]
 for i in range(len(dataSet)):
 character.append([float(tk) for tk in dataSet[i][:-1]])
 label.append(dataSet[i][-1])
 return array(character),array(label)

(2)实现两个数组间的减法,存放于main.py文件中:

#__author__=='qustl_000'
#-*- coding: utf-8 -*-
import numpy as np
import Function
fileName="1.txt"
trainingData,testData=Function.loadData(fileName)
trainingCharacter,trainingLabel=Function.splitData(trainingData)
testCharacter,testLabel=Function.splitData(testData)
diff1=np.tile(testCharacter[0],(len(trainingCharacter),1))-trainingCharacter
print('测试数据集的一条数据,扩充到与训练数据集同维:')
print(np.tile(testCharacter[0],(len(trainingCharacter),1)))
print('训练数据集:')
print(trainingCharacter)
print('作差后的结果:')
print(diff1)

(3)运行结果:

测试数据集的一条数据,扩充到与训练数据集同维:
[[ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]
 [ 1.5 60. ]]
训练数据集:
[[ 1.5 40. ]
 [ 1.5 50. ]
 [ 1.6 40. ]
 [ 1.6 50. ]
 [ 1.6 60. ]
 [ 1.6 70. ]
 [ 1.7 60. ]
 [ 1.7 70. ]
 [ 1.7 80. ]
 [ 1.8 60. ]
 [ 1.8 80. ]
 [ 1.8 90. ]
 [ 1.9 90. ]]
作差后的结果:
[[ 0. 20. ]
 [ 0. 10. ]
 [ -0.1 20. ]
 [ -0.1 10. ]
 [ -0.1 0. ]
 [ -0.1 -10. ]
 [ -0.2 0. ]
 [ -0.2 -10. ]
 [ -0.2 -20. ]
 [ -0.3 0. ]
 [ -0.3 -20. ]
 [ -0.3 -30. ]
 [ -0.4 -30. ]]

数据集如下:

1.5,40,thin
1.5,50,fat
1.5,60,fat
1.6,40,thin
1.6,50,thin
1.6,60,fat
1.6,70,fat
1.7,50,thin
1.7,60,thin
1.7,70,fat
1.7,80,fat
1.8,60,thin
1.8,70,thin
1.8,80,fat
1.8,90,fat
1.9,80,thin
1.9,90,fat

2、处理文本文件,如情感识别类的文件

在进行文本的情感分类时,从电影评论数据集网站上下载数据集后,发现数据集中存在许多不需要的符号。截取部分包含多余字符的数据如下:

对python .txt文件读取及数据处理方法总结

下载数据集后,所有txt文件存放在两个文件夹:“neg”(包含消极评论)和“pos”(包含积极地评论)中。

两者的存放目录如下:“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken”。后面需要用到文件路径,此路径可根据自己存放目录修改。

主要涉及到的python操作有:多余字符的删除、文件夹中多文件的操作。

2.1 多余字符的删除

首先,我们要删除多余的符号,获得干净的数据。

经过查找资料,知道删除一条文本数据中不需要的符号,可以通过re.sub(chara,newChara,data)函数实现,其中chara是需要删除的字符,newChara是删除字符后相应位置的替换字符,data是需要操作的数据。比如下面的代码,指的是删除lines中包含的前面列出的字符,并用空白替换:

lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)

2.2 python对多文件的操作

下面的程序中,pathDirPos指的是所有积极评论的txt文件所在的目录,在此指的是“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken\pos”。child就是获得的每个txt文件全名。

for allDir in pathDirPos:
 child = os.path.join('%s' % allDir)

2.3 电影评论数据集预处理

下面给出对于电影评论数据集的预处理程序(python3.6).

'''获取数据,并去除数据中的多余符号,返回list类型的数据集'''
def loadData(pathDirPos,pathDirNeg):
 posAllData = [] # 积极评论
 negAllData = [] # 消极评论
 # 积极评论
 for allDir in pathDirPos:
 lineDataPos = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/pos/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataPos.append(strc)
  posAllData.append(lineDataPos)
 # 消极评论
 for allDir in pathDirNeg:
 lineDataNeg = []
 child = os.path.join('%s' % allDir)
 filename = r"review_polarity/txt_sentoken/neg/" + child
 with open(filename) as childFile:
  for lines in childFile:
  lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()?【】“”!:,;.?、~@#¥%…&*()0123456789]+", " ", lines)
  line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符)
  for strc in line:
   if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词
   lineDataNeg.append(strc)
  negAllData.append(lineDataNeg)
 return posAllData,negAllData
'''划分数据集,将数据集划分为训练数据和测试数据,参数splitPara为分割比例'''
def splitDataSet(pathDirPos,pathDirNeg,splitPara):
 trainingData=[]
 testData=[]
 traingLabel=[]
 testLabel=[]
 posData,negData=loadData(pathDirPos,pathDirNeg)
 pos_len=len(posData)
 neg_len=len(negData)
 #操作积极评论数据
 for i in range(pos_len):
 if(random.random()<splitPara):
  trainingData.append(posData[i])
  traingLabel.append(1)
 else:
  testData.append(posData[i])
  testLabel.append(1)
 for j in range(neg_len):
 if(random.random()<splitPara):
  trainingData.append(negData[j])
  traingLabel.append(0)
 else:
  testData.append(negData[j])
  testLabel.append(0)
 return trainingData,traingLabel,testData,testLabel

以上这篇对python .txt文件读取及数据处理方法总结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python遍历文件夹并删除特定格式文件的示例
Mar 05 Python
基于进程内通讯的python聊天室实现方法
Jun 28 Python
详解Python中的Cookie模块使用
Jul 06 Python
用Eclipse写python程序
Feb 10 Python
Python3安装Pillow与PIL的方法
Apr 03 Python
详解利用Python scipy.signal.filtfilt() 实现信号滤波
Jun 05 Python
python爬虫 execjs安装配置及使用
Jul 30 Python
python OpenCV GrabCut使用实例解析
Nov 11 Python
Pytorch中index_select() 函数的实现理解
Nov 19 Python
Python字符串中删除特定字符的方法
Jan 15 Python
浅谈python print(xx, flush = True) 全网最清晰的解释
Feb 21 Python
Django用户身份验证完成示例代码
Apr 03 Python
python 读文件,然后转化为矩阵的实例
Apr 23 #Python
python读文件保存到字典,修改字典并写入新文件的实例
Apr 23 #Python
Python 将pdf转成图片的方法
Apr 23 #Python
利用python将pdf输出为txt的实例讲解
Apr 23 #Python
Go/Python/Erlang编程语言对比分析及示例代码
Apr 23 #Python
Python 3.6 读取并操作文件内容的实例
Apr 23 #Python
Python 循环语句之 while,for语句详解
Apr 23 #Python
You might like
php中禁止单个IP与ip段访问的代码小结
2012/07/04 PHP
php变量范围介绍
2012/10/15 PHP
IIS6.0中配置php服务全过程解析
2013/08/07 PHP
PHP实现批量上传单个文件
2015/12/29 PHP
php支持断点续传、分块下载的类
2016/05/02 PHP
Laravel5.7 Eloquent ORM快速入门详解
2019/04/12 PHP
document.all还是document.getElementsByName?
2006/07/21 Javascript
用jquery来定位
2007/02/20 Javascript
基于JQuery.timer插件实现一个计时器
2010/04/25 Javascript
JavaScript面向对象编程入门教程
2014/04/16 Javascript
js实现网页随机切换背景图片的方法
2014/11/01 Javascript
ECMAScript5中的对象存取器属性:getter和setter介绍
2014/12/08 Javascript
JS实现自动变化的导航菜单效果代码
2015/09/09 Javascript
基于Vue实现页面切换左右滑动效果
2020/06/29 Javascript
详解vue axios中文文档
2017/09/12 Javascript
微信小程序wx.request实现后台数据交互功能分析
2017/11/25 Javascript
angular 内存溢出的问题解决
2018/07/12 Javascript
JS中使用react-tooltip插件实现鼠标悬浮显示框
2019/05/15 Javascript
layui禁用侧边导航栏点击事件的解决方法
2019/09/25 Javascript
nodejs实现百度舆情接口应用示例
2020/02/07 NodeJs
小程序中使用css var变量(使js可以动态设置css样式属性)
2020/03/31 Javascript
Python过滤列表用法实例分析
2016/04/29 Python
Python中实现最小二乘法思路及实现代码
2018/01/04 Python
python 2.7 检测一个网页是否能正常访问的方法
2018/12/26 Python
python 计算积分图和haar特征的实例代码
2019/11/20 Python
python_mask_array的用法
2020/02/18 Python
python实现sm2和sm4国密(国家商用密码)算法的示例
2020/09/26 Python
python ssh 执行shell命令的示例
2020/09/29 Python
python中字典增加和删除使用方法
2020/09/30 Python
HTML5 自动聚焦(autofocus)属性使用介绍
2013/08/07 HTML / CSS
阿联酋航空假期:Emirates Holidays
2018/03/20 全球购物
美国电子产品主要品牌的授权在线零售商:DataVision
2019/03/23 全球购物
大一学生的职业生涯规划书范文
2014/01/19 职场文书
副总经理岗位职责
2015/02/02 职场文书
工作会议简报
2015/07/20 职场文书
中学音乐课教学反思
2016/02/18 职场文书