python实现简单遗传算法


Posted in Python onMarch 19, 2018

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
pop = geneEncoding(pop_size, chrom_length)

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

def geneEncoding(pop_size, chrom_length): 
 pop = [[]] 
 for i in range(pop_size): 
  temp = [] 
  for j in range(chrom_length): 
   temp.append(random.randint(0, 1)) 
  pop.append(temp) 
 
 return pop[1:]

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

# 0.0 coding:utf-8 0.0 
# 解码并计算值 
 
import math 
 
 
def decodechrom(pop, chrom_length): 
 temp = [] 
 for i in range(len(pop)): 
  t = 0 
  for j in range(chrom_length): 
   t += pop[i][j] * (math.pow(2, j)) 
  temp.append(t) 
 return temp 
 
 
def calobjValue(pop, chrom_length, max_value): 
 temp1 = [] 
 obj_value = [] 
 temp1 = decodechrom(pop, chrom_length) 
 for i in range(len(temp1)): 
  x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1) 
  obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) 
 return obj_value

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

# 0.0 coding:utf-8 0.0 
 
# 淘汰(去除负值) 
 
 
def calfitValue(obj_value): 
 fit_value = [] 
 c_min = 0 
 for i in range(len(obj_value)): 
  if(obj_value[i] + c_min > 0): 
   temp = c_min + obj_value[i] 
  else: 
   temp = 0.0 
  fit_value.append(temp) 
 return fit_value

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

# 0.0 coding:utf-8 0.0 
# 选择 
 
import random 
 
 
def sum(fit_value): 
 total = 0 
 for i in range(len(fit_value)): 
  total += fit_value[i] 
 return total 
 
 
def cumsum(fit_value): 
 for i in range(len(fit_value)-2, -1, -1): 
  t = 0 
  j = 0 
  while(j <= i): 
   t += fit_value[j] 
   j += 1 
  fit_value[i] = t 
  fit_value[len(fit_value)-1] = 1 
 
 
def selection(pop, fit_value): 
 newfit_value = [] 
 # 适应度总和 
 total_fit = sum(fit_value) 
 for i in range(len(fit_value)): 
  newfit_value.append(fit_value[i] / total_fit) 
 # 计算累计概率 
 cumsum(newfit_value) 
 ms = [] 
 pop_len = len(pop) 
 for i in range(pop_len): 
  ms.append(random.random()) 
 ms.sort() 
 fitin = 0 
 newin = 0 
 newpop = pop 
 # 转轮盘选择法 
 while newin < pop_len: 
  if(ms[newin] < newfit_value[fitin]): 
   newpop[newin] = pop[fitin] 
   newin = newin + 1 
  else: 
   fitin = fitin + 1 
 pop = newpop

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。
选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

# 0.0 coding:utf-8 0.0 
# 交配 
 
import random 
 
 
def crossover(pop, pc): 
 pop_len = len(pop) 
 for i in range(pop_len - 1): 
  if(random.random() < pc): 
   cpoint = random.randint(0,len(pop[0])) 
   temp1 = [] 
   temp2 = [] 
   temp1.extend(pop[i][0:cpoint]) 
   temp1.extend(pop[i+1][cpoint:len(pop[i])]) 
   temp2.extend(pop[i+1][0:cpoint]) 
   temp2.extend(pop[i][cpoint:len(pop[i])]) 
   pop[i] = temp1 
   pop[i+1] = temp2

变异:

# 0.0 coding:utf-8 0.0 
# 基因突变 
 
import random 
 
 
def mutation(pop, pm): 
 px = len(pop) 
 py = len(pop[0]) 
  
 for i in range(px): 
  if(random.random() < pm): 
   mpoint = random.randint(0, py-1) 
   if(pop[i][mpoint] == 1): 
    pop[i][mpoint] = 0 
   else: 
    pop[i][mpoint] = 1

整个遗传算法的实现完成了,总的调用入口代码如下

# 0.0 coding:utf-8 0.0 
 
import matplotlib.pyplot as plt 
import math 
 
from calobjValue import calobjValue 
from calfitValue import calfitValue 
from selection import selection 
from crossover import crossover 
from mutation import mutation 
from best import best 
from geneEncoding import geneEncoding 
 
print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)' 
 
 
# 计算2进制序列代表的数值 
def b2d(b, max_value, chrom_length): 
 t = 0 
 for j in range(len(b)): 
  t += b[j] * (math.pow(2, j)) 
 t = t * max_value / (math.pow(2, chrom_length) - 1) 
 return t 
 
pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)] 
pop = geneEncoding(pop_size, chrom_length) 
 
for i in range(pop_size): 
 obj_value = calobjValue(pop, chrom_length, max_value)  # 个体评价 
 fit_value = calfitValue(obj_value)  # 淘汰 
 best_individual, best_fit = best(pop, fit_value)  # 第一个存储最优的解, 第二个存储最优基因 
 results.append([best_fit, b2d(best_individual, max_value, chrom_length)]) 
 selection(pop, fit_value)  # 新种群复制 
 crossover(pop, pc)  # 交配 
 mutation(pop, pm)  # 变异 
 
results = results[1:] 
results.sort() 
 
X = [] 
Y = [] 
for i in range(500): 
 X.append(i) 
 t = results[i][0] 
 Y.append(t) 
 
plt.plot(X, Y) 
plt.show()

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

python实现简单遗传算法

完整代码可以在github 查看

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python文件操作整理汇总
Oct 21 Python
python访问类中docstring注释的实现方法
May 04 Python
Python机器学习之K-Means聚类实现详解
Feb 22 Python
python如何修改装饰器中参数
Mar 20 Python
python线程中同步锁详解
Apr 27 Python
Python实现监控Nginx配置文件的不同并发送邮件报警功能示例
Feb 26 Python
python excel转换csv代码实例
Aug 26 Python
Django框架HttpRequest对象用法实例分析
Nov 01 Python
Python导入模块包原理及相关注意事项
Mar 25 Python
基于Python实现2种反转链表方法代码实例
Jul 06 Python
Python命令行参数定义及需要注意的地方
Nov 30 Python
java字符串格式化输出实例讲解
Jan 06 Python
python psutil库安装教程
Mar 19 #Python
Python递归实现汉诺塔算法示例
Mar 19 #Python
Python实现替换文件中指定内容的方法
Mar 19 #Python
python书籍信息爬虫实例
Mar 19 #Python
python中字符串比较使用is、==和cmp()总结
Mar 18 #Python
Python使用zip合并相邻列表项的方法示例
Mar 17 #Python
Python zip()函数用法实例分析
Mar 17 #Python
You might like
openPNE常用方法分享
2011/11/29 PHP
PHP中常用的转义函数
2014/02/28 PHP
用js实现计算加载页面所用的时间
2010/04/02 Javascript
iframe自适应宽度、高度 ie6 7 8,firefox 3.86下测试通过
2010/07/29 Javascript
关于捕获用户何时点击window.onbeforeunload的取消事件
2011/03/06 Javascript
jquery的flexigrid无法显示数据提示获取到数据
2013/07/19 Javascript
js的回调函数详解
2015/01/05 Javascript
使用console进行性能测试
2015/04/27 Javascript
JavaScript判断IE版本型号
2015/07/27 Javascript
原生js制作日历控件实例分享
2016/04/06 Javascript
BootStrap与Select2使用小结
2017/02/17 Javascript
JavaScript在控件上添加倒计时功能的实现代码
2017/07/04 Javascript
JS中type=&quot;button&quot;和type=&quot;submit&quot;的区别
2017/07/04 Javascript
浏览器调试动态js脚本的方法(图解)
2018/01/19 Javascript
通过js动态创建标签,并设置属性方法
2018/02/24 Javascript
vue实现div拖拽互换位置
2020/07/29 Javascript
createObjectURL方法实现本地图片预览
2019/09/30 Javascript
vue实现移动端拖动排序
2020/08/21 Javascript
在Django的视图中使用数据库查询的方法
2015/07/16 Python
Python使用itchat 功能分析微信好友性别和位置
2019/08/05 Python
django 模型字段设置默认值代码
2020/07/15 Python
Python getattr()函数使用方法代码实例
2020/08/10 Python
Python生成并下载文件后端代码实例
2020/08/31 Python
html5使用canvas画空心圆与实心圆
2014/12/15 HTML / CSS
深入理解HTML的FormData对象
2016/05/17 HTML / CSS
日本最大的购物网站乐天市场国际版:Rakuten Global Market(支持中文)
2020/02/03 全球购物
可靠的数据流传输TCP
2016/03/15 面试题
小学运动会入场式解说词
2014/02/18 职场文书
年级组长自我鉴定
2014/02/22 职场文书
飘柔洗发水广告词
2014/03/14 职场文书
职务聘任书范文
2014/03/29 职场文书
社区党员志愿服务活动方案
2014/08/18 职场文书
农村党建工作汇报材料
2014/10/27 职场文书
2015年超市员工工作总结
2015/05/04 职场文书
解决IDEA翻译插件Translation报错更新TTK失败不能使用
2022/04/24 Python