python实现简单遗传算法


Posted in Python onMarch 19, 2018

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
pop = geneEncoding(pop_size, chrom_length)

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

def geneEncoding(pop_size, chrom_length): 
 pop = [[]] 
 for i in range(pop_size): 
  temp = [] 
  for j in range(chrom_length): 
   temp.append(random.randint(0, 1)) 
  pop.append(temp) 
 
 return pop[1:]

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

# 0.0 coding:utf-8 0.0 
# 解码并计算值 
 
import math 
 
 
def decodechrom(pop, chrom_length): 
 temp = [] 
 for i in range(len(pop)): 
  t = 0 
  for j in range(chrom_length): 
   t += pop[i][j] * (math.pow(2, j)) 
  temp.append(t) 
 return temp 
 
 
def calobjValue(pop, chrom_length, max_value): 
 temp1 = [] 
 obj_value = [] 
 temp1 = decodechrom(pop, chrom_length) 
 for i in range(len(temp1)): 
  x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1) 
  obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) 
 return obj_value

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

# 0.0 coding:utf-8 0.0 
 
# 淘汰(去除负值) 
 
 
def calfitValue(obj_value): 
 fit_value = [] 
 c_min = 0 
 for i in range(len(obj_value)): 
  if(obj_value[i] + c_min > 0): 
   temp = c_min + obj_value[i] 
  else: 
   temp = 0.0 
  fit_value.append(temp) 
 return fit_value

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

# 0.0 coding:utf-8 0.0 
# 选择 
 
import random 
 
 
def sum(fit_value): 
 total = 0 
 for i in range(len(fit_value)): 
  total += fit_value[i] 
 return total 
 
 
def cumsum(fit_value): 
 for i in range(len(fit_value)-2, -1, -1): 
  t = 0 
  j = 0 
  while(j <= i): 
   t += fit_value[j] 
   j += 1 
  fit_value[i] = t 
  fit_value[len(fit_value)-1] = 1 
 
 
def selection(pop, fit_value): 
 newfit_value = [] 
 # 适应度总和 
 total_fit = sum(fit_value) 
 for i in range(len(fit_value)): 
  newfit_value.append(fit_value[i] / total_fit) 
 # 计算累计概率 
 cumsum(newfit_value) 
 ms = [] 
 pop_len = len(pop) 
 for i in range(pop_len): 
  ms.append(random.random()) 
 ms.sort() 
 fitin = 0 
 newin = 0 
 newpop = pop 
 # 转轮盘选择法 
 while newin < pop_len: 
  if(ms[newin] < newfit_value[fitin]): 
   newpop[newin] = pop[fitin] 
   newin = newin + 1 
  else: 
   fitin = fitin + 1 
 pop = newpop

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。
选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

# 0.0 coding:utf-8 0.0 
# 交配 
 
import random 
 
 
def crossover(pop, pc): 
 pop_len = len(pop) 
 for i in range(pop_len - 1): 
  if(random.random() < pc): 
   cpoint = random.randint(0,len(pop[0])) 
   temp1 = [] 
   temp2 = [] 
   temp1.extend(pop[i][0:cpoint]) 
   temp1.extend(pop[i+1][cpoint:len(pop[i])]) 
   temp2.extend(pop[i+1][0:cpoint]) 
   temp2.extend(pop[i][cpoint:len(pop[i])]) 
   pop[i] = temp1 
   pop[i+1] = temp2

变异:

# 0.0 coding:utf-8 0.0 
# 基因突变 
 
import random 
 
 
def mutation(pop, pm): 
 px = len(pop) 
 py = len(pop[0]) 
  
 for i in range(px): 
  if(random.random() < pm): 
   mpoint = random.randint(0, py-1) 
   if(pop[i][mpoint] == 1): 
    pop[i][mpoint] = 0 
   else: 
    pop[i][mpoint] = 1

整个遗传算法的实现完成了,总的调用入口代码如下

# 0.0 coding:utf-8 0.0 
 
import matplotlib.pyplot as plt 
import math 
 
from calobjValue import calobjValue 
from calfitValue import calfitValue 
from selection import selection 
from crossover import crossover 
from mutation import mutation 
from best import best 
from geneEncoding import geneEncoding 
 
print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)' 
 
 
# 计算2进制序列代表的数值 
def b2d(b, max_value, chrom_length): 
 t = 0 
 for j in range(len(b)): 
  t += b[j] * (math.pow(2, j)) 
 t = t * max_value / (math.pow(2, chrom_length) - 1) 
 return t 
 
pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)] 
pop = geneEncoding(pop_size, chrom_length) 
 
for i in range(pop_size): 
 obj_value = calobjValue(pop, chrom_length, max_value)  # 个体评价 
 fit_value = calfitValue(obj_value)  # 淘汰 
 best_individual, best_fit = best(pop, fit_value)  # 第一个存储最优的解, 第二个存储最优基因 
 results.append([best_fit, b2d(best_individual, max_value, chrom_length)]) 
 selection(pop, fit_value)  # 新种群复制 
 crossover(pop, pc)  # 交配 
 mutation(pop, pm)  # 变异 
 
results = results[1:] 
results.sort() 
 
X = [] 
Y = [] 
for i in range(500): 
 X.append(i) 
 t = results[i][0] 
 Y.append(t) 
 
plt.plot(X, Y) 
plt.show()

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

python实现简单遗传算法

完整代码可以在github 查看

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的多线程端口扫描工具分享
Jan 21 Python
Python的Flask框架中实现登录用户的个人资料和头像的教程
Apr 20 Python
Python操作MySQL模拟银行转账
Mar 12 Python
Python简单定义与使用二叉树示例
May 11 Python
python操作openpyxl导出Excel 设置单元格格式及合并处理代码实例
Aug 27 Python
Python中Flask-RESTful编写API接口(小白入门)
Dec 11 Python
python将图片转base64,实现前端显示
Jan 09 Python
python 命名规范知识点汇总
Feb 14 Python
python可迭代对象去重实例
May 15 Python
Python实现EM算法实例代码
Oct 04 Python
python安装mysql的依赖包mysql-python操作
Jan 01 Python
新手必备Python开发环境搭建教程
May 28 Python
python psutil库安装教程
Mar 19 #Python
Python递归实现汉诺塔算法示例
Mar 19 #Python
Python实现替换文件中指定内容的方法
Mar 19 #Python
python书籍信息爬虫实例
Mar 19 #Python
python中字符串比较使用is、==和cmp()总结
Mar 18 #Python
Python使用zip合并相邻列表项的方法示例
Mar 17 #Python
Python zip()函数用法实例分析
Mar 17 #Python
You might like
很让人受教的 提高php代码质量36计
2012/09/05 PHP
浅析php变量作用域的一些问题
2013/08/08 PHP
php无限遍历目录示例
2014/02/21 PHP
php的ZipArchive类用法实例
2014/10/20 PHP
PHP 在数组中搜索给定的简单实例 array_search 函数
2016/06/13 PHP
Thinkphp5.0框架的Db操作实例分析【连接、增删改查、链式操作等】
2019/10/11 PHP
javascript 检测浏览器类型和版本的代码
2009/09/15 Javascript
JavaScript打开word文档的实现代码(c#)
2012/04/16 Javascript
flash调用js中的方法,让js传递变量给flash的办法及思路
2013/08/07 Javascript
原生js实现的贪吃蛇网页版游戏完整实例
2015/05/18 Javascript
Bootstrap按钮组件详解
2016/04/26 Javascript
JavaScript实现父子dom同时绑定两个点击事件,一个用捕获,一个用冒泡时执行顺序的方法
2017/03/30 Javascript
详解Vue中状态管理Vuex
2017/05/11 Javascript
微信小程序页面开发注意事项整理
2017/05/18 Javascript
在一般处理程序(ashx)中弹出js提示语
2017/08/16 Javascript
使用jquery的jsonp如何发起跨域请求及其原理详解
2017/08/17 jQuery
彻底搞懂JavaScript中的apply和call方法(必看)
2017/09/18 Javascript
JS解惑之Object中的key是有序的么
2019/05/06 Javascript
JS计算两个数组的交集、差集、并集、补集(多种实现方式)
2019/05/21 Javascript
antd 表格列宽自适应方法以及错误处理操作
2020/10/27 Javascript
python中精确输出JSON浮点数的方法
2014/04/18 Python
Python快速从注释生成文档的方法
2016/12/26 Python
基于python 字符编码的理解
2017/09/02 Python
python书籍信息爬虫实例
2018/03/19 Python
python实现n个数中选出m个数的方法
2018/11/13 Python
Python的互斥锁与信号量详解
2019/09/12 Python
python 实现turtle画图并导出图片格式的文件
2019/12/07 Python
CSS3中线性颜色渐变的一些实现方法
2015/07/14 HTML / CSS
应聘医药代表职位求职信
2013/10/21 职场文书
父母对孩子的寄语
2014/04/09 职场文书
甜品店创业计划书
2014/09/21 职场文书
对照四风自我剖析材料
2014/10/07 职场文书
成本会计岗位职责
2015/02/03 职场文书
财务部岗位职责
2015/02/03 职场文书
小学大队干部竞选稿
2015/11/20 职场文书
java中重写父类方法加不加@Override详解
2021/06/21 Java/Android