python实现简单遗传算法


Posted in Python onMarch 19, 2018

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
pop = geneEncoding(pop_size, chrom_length)

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

def geneEncoding(pop_size, chrom_length): 
 pop = [[]] 
 for i in range(pop_size): 
  temp = [] 
  for j in range(chrom_length): 
   temp.append(random.randint(0, 1)) 
  pop.append(temp) 
 
 return pop[1:]

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

# 0.0 coding:utf-8 0.0 
# 解码并计算值 
 
import math 
 
 
def decodechrom(pop, chrom_length): 
 temp = [] 
 for i in range(len(pop)): 
  t = 0 
  for j in range(chrom_length): 
   t += pop[i][j] * (math.pow(2, j)) 
  temp.append(t) 
 return temp 
 
 
def calobjValue(pop, chrom_length, max_value): 
 temp1 = [] 
 obj_value = [] 
 temp1 = decodechrom(pop, chrom_length) 
 for i in range(len(temp1)): 
  x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1) 
  obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) 
 return obj_value

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

# 0.0 coding:utf-8 0.0 
 
# 淘汰(去除负值) 
 
 
def calfitValue(obj_value): 
 fit_value = [] 
 c_min = 0 
 for i in range(len(obj_value)): 
  if(obj_value[i] + c_min > 0): 
   temp = c_min + obj_value[i] 
  else: 
   temp = 0.0 
  fit_value.append(temp) 
 return fit_value

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

# 0.0 coding:utf-8 0.0 
# 选择 
 
import random 
 
 
def sum(fit_value): 
 total = 0 
 for i in range(len(fit_value)): 
  total += fit_value[i] 
 return total 
 
 
def cumsum(fit_value): 
 for i in range(len(fit_value)-2, -1, -1): 
  t = 0 
  j = 0 
  while(j <= i): 
   t += fit_value[j] 
   j += 1 
  fit_value[i] = t 
  fit_value[len(fit_value)-1] = 1 
 
 
def selection(pop, fit_value): 
 newfit_value = [] 
 # 适应度总和 
 total_fit = sum(fit_value) 
 for i in range(len(fit_value)): 
  newfit_value.append(fit_value[i] / total_fit) 
 # 计算累计概率 
 cumsum(newfit_value) 
 ms = [] 
 pop_len = len(pop) 
 for i in range(pop_len): 
  ms.append(random.random()) 
 ms.sort() 
 fitin = 0 
 newin = 0 
 newpop = pop 
 # 转轮盘选择法 
 while newin < pop_len: 
  if(ms[newin] < newfit_value[fitin]): 
   newpop[newin] = pop[fitin] 
   newin = newin + 1 
  else: 
   fitin = fitin + 1 
 pop = newpop

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。
选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

# 0.0 coding:utf-8 0.0 
# 交配 
 
import random 
 
 
def crossover(pop, pc): 
 pop_len = len(pop) 
 for i in range(pop_len - 1): 
  if(random.random() < pc): 
   cpoint = random.randint(0,len(pop[0])) 
   temp1 = [] 
   temp2 = [] 
   temp1.extend(pop[i][0:cpoint]) 
   temp1.extend(pop[i+1][cpoint:len(pop[i])]) 
   temp2.extend(pop[i+1][0:cpoint]) 
   temp2.extend(pop[i][cpoint:len(pop[i])]) 
   pop[i] = temp1 
   pop[i+1] = temp2

变异:

# 0.0 coding:utf-8 0.0 
# 基因突变 
 
import random 
 
 
def mutation(pop, pm): 
 px = len(pop) 
 py = len(pop[0]) 
  
 for i in range(px): 
  if(random.random() < pm): 
   mpoint = random.randint(0, py-1) 
   if(pop[i][mpoint] == 1): 
    pop[i][mpoint] = 0 
   else: 
    pop[i][mpoint] = 1

整个遗传算法的实现完成了,总的调用入口代码如下

# 0.0 coding:utf-8 0.0 
 
import matplotlib.pyplot as plt 
import math 
 
from calobjValue import calobjValue 
from calfitValue import calfitValue 
from selection import selection 
from crossover import crossover 
from mutation import mutation 
from best import best 
from geneEncoding import geneEncoding 
 
print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)' 
 
 
# 计算2进制序列代表的数值 
def b2d(b, max_value, chrom_length): 
 t = 0 
 for j in range(len(b)): 
  t += b[j] * (math.pow(2, j)) 
 t = t * max_value / (math.pow(2, chrom_length) - 1) 
 return t 
 
pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)] 
pop = geneEncoding(pop_size, chrom_length) 
 
for i in range(pop_size): 
 obj_value = calobjValue(pop, chrom_length, max_value)  # 个体评价 
 fit_value = calfitValue(obj_value)  # 淘汰 
 best_individual, best_fit = best(pop, fit_value)  # 第一个存储最优的解, 第二个存储最优基因 
 results.append([best_fit, b2d(best_individual, max_value, chrom_length)]) 
 selection(pop, fit_value)  # 新种群复制 
 crossover(pop, pc)  # 交配 
 mutation(pop, pm)  # 变异 
 
results = results[1:] 
results.sort() 
 
X = [] 
Y = [] 
for i in range(500): 
 X.append(i) 
 t = results[i][0] 
 Y.append(t) 
 
plt.plot(X, Y) 
plt.show()

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

python实现简单遗传算法

完整代码可以在github 查看

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python的设计模式编程入门指南
Apr 02 Python
Python使用asyncio包处理并发详解
Sep 09 Python
Python设计模式之中介模式简单示例
Jan 09 Python
Python wxPython库Core组件BoxSizer用法示例
Sep 03 Python
Django框架orM与自定义SQL语句混合事务控制操作
Jun 27 Python
Python基于BeautifulSoup和requests实现的爬虫功能示例
Aug 02 Python
Python socket 套接字实现通信详解
Aug 27 Python
Pytorch之parameters的使用
Dec 31 Python
Django 实现对已存在的model进行更改
Mar 28 Python
python实现贪吃蛇双人大战
Apr 18 Python
在Anaconda3下使用清华镜像源安装TensorFlow(CPU版)
Apr 19 Python
Python中递归以及递归遍历目录详解
Oct 24 Python
python psutil库安装教程
Mar 19 #Python
Python递归实现汉诺塔算法示例
Mar 19 #Python
Python实现替换文件中指定内容的方法
Mar 19 #Python
python书籍信息爬虫实例
Mar 19 #Python
python中字符串比较使用is、==和cmp()总结
Mar 18 #Python
Python使用zip合并相邻列表项的方法示例
Mar 17 #Python
Python zip()函数用法实例分析
Mar 17 #Python
You might like
php初始化对象和析构函数的简单实例
2014/03/11 PHP
Linux系统中设置多版本PHP共存配合Nginx服务器使用
2015/12/21 PHP
PHP自定义错误用法示例
2016/09/28 PHP
Yii 使用intervention/image拓展实现图像处理功能
2019/06/22 PHP
使用jscript实现二进制读写脚本代码
2008/06/09 Javascript
国外的为初学者写的JavaScript教程
2008/06/09 Javascript
jquery text()要注意啦
2009/10/30 Javascript
return false;和e.preventDefault();的区别
2010/07/11 Javascript
仅IE支持clearAttributes/mergeAttributes方法使用介绍
2012/05/04 Javascript
javascript游戏开发之《三国志曹操传》零部件开发(五)可移动地图的实现
2013/01/23 Javascript
js中通过父级进行查找定位元素
2014/06/15 Javascript
jQuery中:visible选择器用法实例
2014/12/30 Javascript
Bootstrap文件上传组件之bootstrap fileinput
2016/11/25 Javascript
利用JQuery实现datatables插件的增加和删除行功能
2017/01/06 Javascript
一文让你彻底搞清楚javascript中的require、import与export
2017/09/24 Javascript
iview在vue-cli3如何按需加载的方法
2018/10/31 Javascript
微信小程序地图导航功能实现完整源代码附效果图(推荐)
2019/04/28 Javascript
jQuery 查找元素操作实例小结
2019/10/02 jQuery
在Uni中使用Vue的EventBus总线机制操作
2020/07/31 Javascript
利用Python获取操作系统信息实例
2016/09/02 Python
Python 遍历子文件和所有子文件夹的代码实例
2016/12/21 Python
Python基于回溯法子集树模板解决取物搭配问题实例
2017/09/02 Python
Python查找文件中包含中文的行方法
2018/12/19 Python
Python中的引用知识点总结
2019/05/20 Python
python从zip中删除指定后缀文件(推荐)
2019/12/05 Python
Python脚本如何在bilibili中查找弹幕发送者
2020/06/04 Python
python3爬虫中引用Queue的实例讲解
2020/11/24 Python
护理学毕业生自荐信
2013/10/02 职场文书
《搭石》教学反思
2014/04/07 职场文书
2014年收银工作总结
2014/11/13 职场文书
办公楼租房协议书范本
2014/11/25 职场文书
2015学校六五普法工作总结
2015/04/22 职场文书
小孩不笨观后感
2015/06/03 职场文书
2016年七夕情人节宣传语
2015/11/25 职场文书
GoLang中生成UUID唯一标识的实现
2021/05/08 Golang
Python 中的Sympy详细使用
2021/08/07 Python