利用Python爬取微博数据生成词云图片实例代码


Posted in Python onAugust 31, 2017

前言

在很早之前写过一篇怎么利用微博数据制作词云图片出来,之前的写得不完整,而且只能使用自己的数据,现在重新整理了一下,任何的微博数据都可以制作出来,一年一度的虐汪节,是继续蹲在角落默默吃狗粮还是主动出击告别单身汪加入散狗粮的行列就看你啦,七夕送什么才有心意,程序猿可以试试用一种特别的方式来表达你对女神的心意。有一个创意是把她过往发的微博整理后用词云展示出来。本文教你怎么用Python快速创建出有心意词云,即使是Python小白也能分分钟做出来。下面话不多说了,来一起看看详细的介绍吧。

准备工作

本环境基于Python3,理论上Python2.7也是可行的,先安装必要的第三方依赖包:

# requirement.txt
jieba==0.38
matplotlib==2.0.2
numpy==1.13.1
pyparsing==2.2.0
requests==2.18.4
scipy==0.19.1
wordcloud==1.3.1

requirement.txt文件中包含上面的几个依赖包,如果用pip方式安装失败,推荐使用Anaconda安装

pip install -r requirement.txt

第一步:分析网址

打开微博移动端网址 https://m.weibo.cn/searchs ,找到女神的微博ID,进入她的微博主页,分析浏览器发送请求的过程

利用Python爬取微博数据生成词云图片实例代码

打开 Chrome 浏览器的调试功能,选择 Network 菜单,观察到获取微博数据的的接口是 https://m.weibo.cn/api/container/getIndex ,后面附带了一连串的参数,这里面有些参数是根据用户变化的,有些是固定的,先提取出来。

uid=1192515960&
luicode=10000011&
lfid=100103type%3D3%26q%3D%E6%9D%8E%E5%86%B0%E5%86%B0&
featurecode=20000320&
type=user&
containerid=1076031192515960

再来分析接口的返回结果,返回数据是一个JSON字典结构,total 是微博总条数,每一条具体的微博内容封装在 cards 数组中,具体内容字段是里面的 text 字段。很多干扰信息已隐去。

{
 "cardlistInfo": {
 "containerid": "1076031192515960",
 "total": 4754,
 "page": 2
 },
 "cards": [
 {
 "card_type": 9,
 "mblog": {
 "created_at": "08-26",
 "idstr": "4145069944506080",
 "text": "瑞士一日游圆满结束...",
 }
 }]
}

第二步:构建请求头和查询参数

分析完网页后,我们开始用 requests 模拟浏览器构造爬虫获取数据,因为这里获取用户的数据无需登录微博,所以我们不需要构造 cookie信息,只需要基本的请求头即可,具体需要哪些头信息也可以从浏览器中获取,首先构造必须要的请求参数,包括请求头和查询参数。

利用Python爬取微博数据生成词云图片实例代码

headers = {
 "Host": "m.weibo.cn",
 "Referer": "https://m.weibo.cn/u/1705822647",
 "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) "
   "Version/9.0 Mobile/13B143 Safari/601.1",
}

params = {"uid": "{uid}",
  "luicode": "20000174",
  "featurecode": "20000320",
  "type": "uid",
  "value": "1705822647",
  "containerid": "{containerid}",
  "page": "{page}"}
  • uid是微博用户的id
  • containerid虽然不什么意思,但也是和具体某个用户相关的参数
  • page 分页参数

第三步:构造简单爬虫

通过返回的数据能查询到总微博条数 total,爬取数据直接利用 requests 提供的方法把 json 数据转换成 Python 字典对象,从中提取出所有的 text 字段的值并放到 blogs 列表中,提取文本之前进行简单过滤,去掉无用信息。顺便把数据写入文件,方便下次转换时不再重复爬取。

def fetch_data(uid=None, container_id=None):
 """
 抓取数据,并保存到CSV文件中
 :return:
 """
 page = 0
 total = 4754
 blogs = []
 for i in range(0, total // 10):
 params['uid'] = uid
 params['page'] = str(page)
 params['containerid'] = container_id
 res = requests.get(url, params=params, headers=HEADERS)
 cards = res.json().get("cards")

 for card in cards:
  # 每条微博的正文内容
  if card.get("card_type") == 9:
  text = card.get("mblog").get("text")
  text = clean_html(text)
  blogs.append(text)
 page += 1
 print("抓取第{page}页,目前总共抓取了 {count} 条微博".format(page=page, count=len(blogs)))
 with codecs.open('weibo1.txt', 'w', encoding='utf-8') as f:
  f.write("\n".join(blogs))

利用Python爬取微博数据生成词云图片实例代码

第四步:分词处理并构建词云

爬虫了所有数据之后,先进行分词,这里用的是结巴分词,按照中文语境将句子进行分词处理,分词过程中过滤掉停止词,处理完之后找一张参照图,然后根据参照图通过词语拼装成图。

def generate_image():
 data = []
 jieba.analyse.set_stop_words("./stopwords.txt")

 with codecs.open("weibo1.txt", 'r', encoding="utf-8") as f:
 for text in f.readlines():
  data.extend(jieba.analyse.extract_tags(text, topK=20))
 data = " ".join(data)
 mask_img = imread('./52f90c9a5131c.jpg', flatten=True)
 wordcloud = WordCloud(
  font_path='msyh.ttc',
  background_color='white',
  mask=mask_img
 ).generate(data)
 plt.imshow(wordcloud.recolor(color_func=grey_color_func, random_state=3),
   interpolation="bilinear")
 plt.axis('off')
 plt.savefig('./heart2.jpg', dpi=1600)

最终效果图:

利用Python爬取微博数据生成词云图片实例代码

完整示例代码如下:

# -*- coding:utf-8 -*-
import codecs
import re

import jieba.analyse
import matplotlib.pyplot as plt
import requests
from scipy.misc import imread
from wordcloud import WordCloud

__author__ = 'liuzhijun'

headers = {
  "Host": "m.weibo.cn",
  "Referer": "https://m.weibo.cn/u/1705822647",
  "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) "
         "Version/9.0 Mobile/13B143 Safari/601.1",
}


def clean_html(raw_html):
  pattern = re.compile(r'<.*?>|转发微博|//:|Repost|,|?|。|、|分享图片|回复@.*?:|//@.*')
  text = re.sub(pattern, '', raw_html)
  return text


url = "https://m.weibo.cn/api/container/getIndex"
params = {"uid": "{uid}",
     "luicode": "20000174",
     "featurecode": "20000320",
     "type": "uid",
     "value": "1705822647",
     "containerid": "{containerid}",
     "page": "{page}"}


def fetch_data(uid=None, container_id=None):
  """
  抓取数据,并保存到CSV文件中
  :return:
  """
  page = 0
  total = 4754
  blogs = []
  for i in range(0, total // 10):
    params['uid'] = uid
    params['page'] = str(page)
    params['containerid'] = container_id
    res = requests.get(url, params=params, headers=headers)
    cards = res.json().get("cards")

    for card in cards:
      # 每条微博的正文内容
      if card.get("card_type") == 9:
        text = card.get("mblog").get("text")
        text = clean_html(text)
        blogs.append(text)
    page += 1
    print("抓取第{page}页,目前总共抓取了 {count} 条微博".format(page=page, count=len(blogs)))
    with codecs.open('weibo1.txt', 'w', encoding='utf-8') as f:
      f.write("\n".join(blogs))


def grey_color_func(word, font_size, position, orientation, random_state=None,
          **kwargs):
  s = "hsl(0, 0%%, %d%%)" % 0
  return s


def generate_image():
  data = []
  jieba.analyse.set_stop_words("./stopwords.txt")

  with codecs.open("weibo1.txt", 'r', encoding="utf-8") as f:
    for text in f.readlines():
      data.extend(jieba.analyse.extract_tags(text, topK=20))
    data = " ".join(data)
    mask_img = imread('./52f90c9a5131c.jpg', flatten=True)
    wordcloud = WordCloud(
      font_path='msyh.ttc',
      background_color='white',
      mask=mask_img
    ).generate(data)
    plt.imshow(wordcloud.recolor(color_func=grey_color_func, random_state=3),
          interpolation="bilinear")
    plt.axis('off')
    plt.savefig('./heart2.jpg', dpi=1600)


if __name__ == '__main__':
  fetch_data("1192515960", "1076031192515960")
  generate_image()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
python解析发往本机的数据包示例 (解析数据包)
Jan 16 Python
Python爬取网易云音乐热门评论
Mar 31 Python
Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】
May 04 Python
Python中flatten( )函数及函数用法详解
Nov 02 Python
python redis 删除key脚本的实例
Feb 19 Python
在Django中自定义filter并在template中的使用详解
May 19 Python
Python中关于logging模块的学习笔记
Jun 03 Python
Python 没有main函数的原因
Jul 10 Python
理解Django 中Call Stack机制的小Demo
Sep 01 Python
用python对excel进行操作(读,写,修改)
Dec 25 Python
Django2.1.7 查询数据返回json格式的实现
Dec 29 Python
Python3中对json格式数据的分析处理
Jan 28 Python
Python利用ElementTree模块处理XML的方法详解
Aug 31 #Python
go和python变量赋值遇到的一个问题
Aug 31 #Python
理解Python中的绝对路径和相对路径
Aug 30 #Python
python 递归遍历文件夹,并打印满足条件的文件路径实例
Aug 30 #Python
python递归打印某个目录的内容(实例讲解)
Aug 30 #Python
python-opencv在有噪音的情况下提取图像的轮廓实例
Aug 30 #Python
关于python的list相关知识(推荐)
Aug 30 #Python
You might like
全国FM电台频率大全 - 10 江苏省
2020/03/11 无线电
discuz authcode 经典php加密解密函数解析
2020/07/12 PHP
深入分析php之面向对象
2013/05/15 PHP
php获取远程文件大小
2015/10/20 PHP
PHP 实现页面静态化的几种方法
2017/07/23 PHP
csdn 博客中实现运行代码功能实现
2009/08/29 Javascript
jQuery右键菜单contextMenu使用实例
2011/09/28 Javascript
JS获取并操作iframe中元素的方法
2013/03/21 Javascript
用jquery等比例控制图片宽高的具体实现
2014/01/28 Javascript
PHP中使用微秒计算脚本执行时间例子
2014/11/19 Javascript
使用javascript将时间转换成今天,昨天,前天等格式
2015/06/25 Javascript
jQuery 常用代码集锦(必看篇)
2016/05/16 Javascript
jQuery的层级查找方式分析
2016/06/16 Javascript
将List对象列表转换成JSON格式的类实现方法
2016/07/04 Javascript
JavaScript面向对象编写购物车功能
2016/08/19 Javascript
微信小程序 Audio API详解及实例代码
2016/09/30 Javascript
React Native 环境搭建的教程
2017/08/19 Javascript
官方推荐react-navigation的具体使用详解
2018/05/08 Javascript
Vue项目路由刷新的实现代码
2019/04/17 Javascript
javascript中的this作用域详解
2019/07/15 Javascript
node静态服务器实现静态读取文件或文件夹
2019/12/03 Javascript
微信小程序中target和currentTarget的区别小结
2020/11/06 Javascript
vue添加自定义右键菜单的完整实例
2020/12/08 Vue.js
Python3.4编程实现简单抓取爬虫功能示例
2017/09/14 Python
Python实现简单的HttpServer服务器示例
2017/09/25 Python
基于python绘制科赫雪花
2018/06/22 Python
Python多进程fork()函数详解
2019/02/22 Python
python 通过可变参数计算n个数的乘积方法
2019/06/13 Python
Python-openCV读RGB通道图实例
2020/01/17 Python
在html页面中取得session中的值的方法
2020/08/11 HTML / CSS
警校毕业生自我评价
2014/04/06 职场文书
汽车销售经理岗位职责
2014/06/09 职场文书
庆元旦演讲稿
2014/09/15 职场文书
师德师风自查总结
2014/10/14 职场文书
2015年汽车销售工作总结
2015/04/07 职场文书
童年读书笔记
2015/06/26 职场文书