基于Python和openCV实现图像的全景拼接详细步骤


Posted in Python onOctober 05, 2021

基本介绍

图像的全景拼接,即“缝合”两张具有重叠区域的图来创建一张全景图。其中用到了计算机视觉和图像处理技术有:关键点检测、局部不变特征、关键点匹配、RANSAC(Random Sample Consensus,随机采样一致性)和透视变形。

具体步骤

(1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 ;
(2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 ;
(3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换;
(4)将左图(右图)加入到变换后的图像的左侧(右侧)获得最终图像;

import cv2 as cv        # 导入opencv包
import numpy as np      # 导入numpy包,图像处理中的矩阵运算需要用到


# 检测图像的SIFT关键特征点
def sift_keypoints_detect(image):
    # 处理图像一般很少用到彩色信息,通常直接将图像转换为灰度图
    gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

    # 获取图像特征sift-SIFT特征点,实例化对象sift
    sift = cv.xfeatures2d.SIFT_create()                
    
    # keypoints:特征点向量,向量内的每一个元素是一个KeyPoint对象,包含了特征点的各种属性信息(角度、关键点坐标等)
    # features:表示输出的sift特征向量,通常是128维的
    keypoints, features = sift.detectAndCompute(image, None)
    
    # cv.drawKeyPoints():在图像的关键点部位绘制一个小圆圈
    # 如果传递标志flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,它将绘制一个大小为keypoint的圆圈并显示它的方向
    # 这种方法同时显示图像的坐标,size和方向,是最能显示特征的一种绘制方式
    keypoints_image = cv.drawKeypoints(
        gray_image, keypoints, None, flags=cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
    
    # 返回带关键点的图像、关键点和sift的特征向量
    return keypoints_image, keypoints, features


# 使用KNN检测来自左右图像的SIFT特征,随后进行匹配
def get_feature_point_ensemble(features_right, features_left):
    # 创建BFMatcher对象解决匹配
    bf = cv.BFMatcher()
    # knnMatch()函数:返回每个特征点的最佳匹配k个匹配点
    matches = bf.knnMatch(features_right, features_left, k=2)  # des1为模板图,des2为匹配图
    # 利用sorted()函数对matches对象进行升序(默认)操作
    matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)
    # x:x[]字母可以随意修改,排序方式按照中括号[]里面的维度进行排序,[0]按照第一维排序,[2]按照第三维排序

    # 建立列表good用于存储匹配的点集
    good = []
    for m, n in matches:
    # ratio的值越大,匹配的线条越密集,但错误匹配点也会增多
    	ratio=0.6
        if m.distance < ratio * n.distance:
            good.append(m)
    return good


# 计算视角变换矩阵H,用H对右图进行变换并返回全景拼接图像
def Panorama_stitching(image_right, image_left):
    _, keypoints_right, features_right = sift_keypoints_detect(image_right)
    _, keypoints_left, features_left = sift_keypoints_detect(image_left)
    goodMatch = get_feature_point_ensemble(features_right, features_left)

    # 当筛选项的匹配对大于4对(因为homography单应性矩阵的计算需要至少四个点)时,计算视角变换矩阵
    if len(goodMatch) > 4:
        # 获取匹配对的点坐标
        ptsR = np.float32(
            [keypoints_right[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        ptsL = np.float32(
            [keypoints_left[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        
        # ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法时),若srcPoints和dstPoints是以像素为单位的,该参数通常设置在1到10的范围内
        ransacReprojThreshold = 4
        
        # cv.findHomography():计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列),使用最小均方误差或者RANSAC方法
        # 函数作用:利用基于RANSAC的鲁棒算法选择最优的四组配对点,再计算转换矩阵H(3*3)并返回,以便于反向投影错误率达到最小
        Homography, status = cv.findHomography(
            ptsR, ptsL, cv.RANSAC, ransacReprojThreshold)

        # cv.warpPerspective():透视变换函数,用于解决cv2.warpAffine()不能处理视场和图像不平行的问题
        # 作用:就是对图像进行透视变换,可保持直线不变形,但是平行线可能不再平行
        result = cv.warpPerspective(
            image_right, Homography, (image_right.shape[1] + image_left.shape[1], image_right.shape[0]))
        
        cv.imshow("扭曲变换后的右图", result)
        cv.waitKey(0)
        cv.destroyAllWindows()
        # 将左图加入到变换后的右图像的左端即获得最终图像
        result[0:image_left.shape[0], 0:image_left.shape[1]] = image_left
        
        # 返回全景拼接的图像
        return result


if __name__ == '__main__':

    # 读取需要拼接的图像,需要注意图像左右的顺序
    image_left = cv.imread("./Left.jpg")
    image_right = cv.imread("./Right.jpg")

    # 通过调用cv2.resize()使用插值的方式来改变图像的尺寸,保证左右两张图像大小一致
    # cv.resize()函数中的第二个形参dsize表示输出图像大小尺寸,当设置为0(None)时,则表示按fx与fy与原始图像大小相乘得到输出图像尺寸大小
    image_right = cv.resize(image_right, None, fx=0.4, fy=0.24)
    image_left = cv.resize(image_left, (image_right.shape[1], image_right.shape[0]))

    # 获取检测到关键点后的图像的相关参数
    keypoints_image_right, keypoints_right, features_right = sift_keypoints_detect(image_right)
    keypoints_image_left, keypoints_left, features_left = sift_keypoints_detect(image_left)

    # 利用np.hstack()函数同时将原图和绘有关键点的图像沿着竖直方向(水平顺序)堆叠起来
    cv.imshow("左图关键点检测", np.hstack((image_left, keypoints_image_left)))
    # 一般在imshow后设置 waitKey(0) , 代表按任意键继续
    cv.waitKey(0)
    # 删除先前建立的窗口
    cv.destroyAllWindows()
    cv.imshow("右图关键点检测", np.hstack((image_right, keypoints_image_right)))
    cv.waitKey(0)
    cv.destroyAllWindows()
    goodMatch = get_feature_point_ensemble(features_right, features_left)

    # cv.drawMatches():在提取两幅图像特征之后,画出匹配点对连线
    # matchColor ? 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机
    all_goodmatch_image = cv.drawMatches(
        image_right, keypoints_right, image_left, keypoints_left, goodMatch, None, None, None, None, flags=2)
    cv.imshow("所有匹配的SIFT关键特征点连线", all_goodmatch_image)
    cv.waitKey(0)
    cv.destroyAllWindows()

    # 把图片拼接成全景图并保存
    result = Panorama_stitching(image_right, image_left)
    cv.namedWindow("全景图", cv.WINDOW_AUTOSIZE)
    cv.imshow("全景图", result)
    cv.imwrite("./全景图.jpg", result)
    cv.waitKey(0)
    cv.destroyAllWindows()

左图关键特征点检测

基于Python和openCV实现图像的全景拼接详细步骤

右图关键特征点检测

基于Python和openCV实现图像的全景拼接详细步骤

所有匹配的SIFT关键特征点连线

基于Python和openCV实现图像的全景拼接详细步骤

扭曲变换后的右图

基于Python和openCV实现图像的全景拼接详细步骤

全景图

基于Python和openCV实现图像的全景拼接详细步骤

由于输入的左右图像之间有大量重叠,导致全景图的主要添加部分是在拼接图像的右侧,因此会造成拼接后全景图右边大量的黑色空白区域。

到此这篇关于基于Python和openCV实现图像的全景拼接的文章就介绍到这了,更多相关Python openCV实现图像的全景拼接内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python正则表达式match和search用法实例
Mar 26 Python
Python中pip安装非PyPI官网第三方库的方法
Jun 02 Python
Python探索之修改Python搜索路径
Oct 25 Python
异步任务队列Celery在Django中的使用方法
Jun 07 Python
Python爬虫的两套解析方法和四种爬虫实现过程
Jul 20 Python
使用python批量读取word文档并整理关键信息到excel表格的实例
Nov 07 Python
Python中按值来获取指定的键
Mar 04 Python
python3-flask-3将信息写入日志的实操方法
Nov 12 Python
python清空命令行方式
Jan 13 Python
Python关键字及可变参数*args,**kw原理解析
Apr 04 Python
将pycharm配置为matlab或者spyder的用法说明
Jun 08 Python
python用tkinter实现一个gui的翻译工具
Oct 26 Python
C3 线性化算法与 MRO之Python中的多继承
Python编程super应用场景及示例解析
Python编程源码报错解决方法总结经验分享
Oct 05 #Python
Python编程根据字典列表相同键的值进行合并
Oct 05 #Python
python编程简单几行代码实现视频转换Gif示例
用 Python 定义 Schema 并生成 Parquet 文件详情
Sep 25 #Python
使用pipenv管理python虚拟环境的全过程
Sep 25 #Python
You might like
PHP提示Notice: Undefined variable的解决办法
2012/11/24 PHP
Function eregi is deprecated (解决方法)
2013/06/21 PHP
PHP中使用匿名函数操作数据库的例子
2014/11/17 PHP
php正则匹配文章中的远程图片地址并下载图片至本地
2015/09/29 PHP
作为程序员必知的16个最佳PHP库
2015/12/09 PHP
浅析php如何实现App常用的秒发功能
2016/08/03 PHP
微信公众号之主动给用户发送消息功能
2019/06/22 PHP
php实现图片压缩处理
2020/09/09 PHP
js关闭子窗体刷新父窗体实现方法
2012/12/04 Javascript
使用js修改客户端注册表的方法
2013/08/09 Javascript
node.js中的fs.readFileSync方法使用说明
2014/12/15 Javascript
JavaScript中标识符提升问题
2015/06/11 Javascript
JavaScript中Object.prototype.toString方法的原理
2016/02/24 Javascript
JavaScript的instanceof运算符学习教程
2016/06/08 Javascript
js表单元素checked、radio被选中的几种方法(详解)
2016/08/22 Javascript
详解在Angular项目中添加插件ng-bootstrap
2017/07/04 Javascript
javascript按钮禁用和启用的效果实例代码
2017/10/29 Javascript
VUE和Antv G6实现在线拓扑图编辑操作
2020/10/28 Javascript
JavaScript如何实现防止重复的网络请求的示例
2021/01/28 Javascript
[01:08]DOTA2次级职业联赛 - Shield战队宣传片
2014/12/01 DOTA
Python实现的大数据分析操作系统日志功能示例
2019/02/11 Python
Python Threading 线程/互斥锁/死锁/GIL锁
2019/07/21 Python
python3环境搭建过程(利用Anaconda+pycharm)完整版
2020/08/19 Python
Pam & Gela官网:美国性感前卫女装品牌
2018/07/19 全球购物
毕业自我鉴定
2013/11/05 职场文书
拾金不昧的表扬信
2014/01/16 职场文书
《我为你骄傲》教学反思
2014/02/20 职场文书
《爱如茉莉》教后反思
2014/04/12 职场文书
商业项目策划方案
2014/06/05 职场文书
员工趣味活动方案
2014/08/27 职场文书
2015年度培训工作总结范文
2015/04/02 职场文书
2015年幼儿园学期工作总结
2015/05/22 职场文书
演讲稿之开卷有益
2019/08/07 职场文书
mysql获取指定时间段中所有日期或月份的语句(不设存储过程,不加表)
2021/06/18 MySQL
python使用torch随机初始化参数
2022/03/22 Python
MySql按时,天,周,月进行数据统计
2022/08/14 MySQL