基于Python和openCV实现图像的全景拼接详细步骤


Posted in Python onOctober 05, 2021

基本介绍

图像的全景拼接,即“缝合”两张具有重叠区域的图来创建一张全景图。其中用到了计算机视觉和图像处理技术有:关键点检测、局部不变特征、关键点匹配、RANSAC(Random Sample Consensus,随机采样一致性)和透视变形。

具体步骤

(1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 ;
(2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 ;
(3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换;
(4)将左图(右图)加入到变换后的图像的左侧(右侧)获得最终图像;

import cv2 as cv        # 导入opencv包
import numpy as np      # 导入numpy包,图像处理中的矩阵运算需要用到


# 检测图像的SIFT关键特征点
def sift_keypoints_detect(image):
    # 处理图像一般很少用到彩色信息,通常直接将图像转换为灰度图
    gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

    # 获取图像特征sift-SIFT特征点,实例化对象sift
    sift = cv.xfeatures2d.SIFT_create()                
    
    # keypoints:特征点向量,向量内的每一个元素是一个KeyPoint对象,包含了特征点的各种属性信息(角度、关键点坐标等)
    # features:表示输出的sift特征向量,通常是128维的
    keypoints, features = sift.detectAndCompute(image, None)
    
    # cv.drawKeyPoints():在图像的关键点部位绘制一个小圆圈
    # 如果传递标志flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,它将绘制一个大小为keypoint的圆圈并显示它的方向
    # 这种方法同时显示图像的坐标,size和方向,是最能显示特征的一种绘制方式
    keypoints_image = cv.drawKeypoints(
        gray_image, keypoints, None, flags=cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
    
    # 返回带关键点的图像、关键点和sift的特征向量
    return keypoints_image, keypoints, features


# 使用KNN检测来自左右图像的SIFT特征,随后进行匹配
def get_feature_point_ensemble(features_right, features_left):
    # 创建BFMatcher对象解决匹配
    bf = cv.BFMatcher()
    # knnMatch()函数:返回每个特征点的最佳匹配k个匹配点
    matches = bf.knnMatch(features_right, features_left, k=2)  # des1为模板图,des2为匹配图
    # 利用sorted()函数对matches对象进行升序(默认)操作
    matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)
    # x:x[]字母可以随意修改,排序方式按照中括号[]里面的维度进行排序,[0]按照第一维排序,[2]按照第三维排序

    # 建立列表good用于存储匹配的点集
    good = []
    for m, n in matches:
    # ratio的值越大,匹配的线条越密集,但错误匹配点也会增多
    	ratio=0.6
        if m.distance < ratio * n.distance:
            good.append(m)
    return good


# 计算视角变换矩阵H,用H对右图进行变换并返回全景拼接图像
def Panorama_stitching(image_right, image_left):
    _, keypoints_right, features_right = sift_keypoints_detect(image_right)
    _, keypoints_left, features_left = sift_keypoints_detect(image_left)
    goodMatch = get_feature_point_ensemble(features_right, features_left)

    # 当筛选项的匹配对大于4对(因为homography单应性矩阵的计算需要至少四个点)时,计算视角变换矩阵
    if len(goodMatch) > 4:
        # 获取匹配对的点坐标
        ptsR = np.float32(
            [keypoints_right[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        ptsL = np.float32(
            [keypoints_left[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
        
        # ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法时),若srcPoints和dstPoints是以像素为单位的,该参数通常设置在1到10的范围内
        ransacReprojThreshold = 4
        
        # cv.findHomography():计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列),使用最小均方误差或者RANSAC方法
        # 函数作用:利用基于RANSAC的鲁棒算法选择最优的四组配对点,再计算转换矩阵H(3*3)并返回,以便于反向投影错误率达到最小
        Homography, status = cv.findHomography(
            ptsR, ptsL, cv.RANSAC, ransacReprojThreshold)

        # cv.warpPerspective():透视变换函数,用于解决cv2.warpAffine()不能处理视场和图像不平行的问题
        # 作用:就是对图像进行透视变换,可保持直线不变形,但是平行线可能不再平行
        result = cv.warpPerspective(
            image_right, Homography, (image_right.shape[1] + image_left.shape[1], image_right.shape[0]))
        
        cv.imshow("扭曲变换后的右图", result)
        cv.waitKey(0)
        cv.destroyAllWindows()
        # 将左图加入到变换后的右图像的左端即获得最终图像
        result[0:image_left.shape[0], 0:image_left.shape[1]] = image_left
        
        # 返回全景拼接的图像
        return result


if __name__ == '__main__':

    # 读取需要拼接的图像,需要注意图像左右的顺序
    image_left = cv.imread("./Left.jpg")
    image_right = cv.imread("./Right.jpg")

    # 通过调用cv2.resize()使用插值的方式来改变图像的尺寸,保证左右两张图像大小一致
    # cv.resize()函数中的第二个形参dsize表示输出图像大小尺寸,当设置为0(None)时,则表示按fx与fy与原始图像大小相乘得到输出图像尺寸大小
    image_right = cv.resize(image_right, None, fx=0.4, fy=0.24)
    image_left = cv.resize(image_left, (image_right.shape[1], image_right.shape[0]))

    # 获取检测到关键点后的图像的相关参数
    keypoints_image_right, keypoints_right, features_right = sift_keypoints_detect(image_right)
    keypoints_image_left, keypoints_left, features_left = sift_keypoints_detect(image_left)

    # 利用np.hstack()函数同时将原图和绘有关键点的图像沿着竖直方向(水平顺序)堆叠起来
    cv.imshow("左图关键点检测", np.hstack((image_left, keypoints_image_left)))
    # 一般在imshow后设置 waitKey(0) , 代表按任意键继续
    cv.waitKey(0)
    # 删除先前建立的窗口
    cv.destroyAllWindows()
    cv.imshow("右图关键点检测", np.hstack((image_right, keypoints_image_right)))
    cv.waitKey(0)
    cv.destroyAllWindows()
    goodMatch = get_feature_point_ensemble(features_right, features_left)

    # cv.drawMatches():在提取两幅图像特征之后,画出匹配点对连线
    # matchColor ? 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机
    all_goodmatch_image = cv.drawMatches(
        image_right, keypoints_right, image_left, keypoints_left, goodMatch, None, None, None, None, flags=2)
    cv.imshow("所有匹配的SIFT关键特征点连线", all_goodmatch_image)
    cv.waitKey(0)
    cv.destroyAllWindows()

    # 把图片拼接成全景图并保存
    result = Panorama_stitching(image_right, image_left)
    cv.namedWindow("全景图", cv.WINDOW_AUTOSIZE)
    cv.imshow("全景图", result)
    cv.imwrite("./全景图.jpg", result)
    cv.waitKey(0)
    cv.destroyAllWindows()

左图关键特征点检测

基于Python和openCV实现图像的全景拼接详细步骤

右图关键特征点检测

基于Python和openCV实现图像的全景拼接详细步骤

所有匹配的SIFT关键特征点连线

基于Python和openCV实现图像的全景拼接详细步骤

扭曲变换后的右图

基于Python和openCV实现图像的全景拼接详细步骤

全景图

基于Python和openCV实现图像的全景拼接详细步骤

由于输入的左右图像之间有大量重叠,导致全景图的主要添加部分是在拼接图像的右侧,因此会造成拼接后全景图右边大量的黑色空白区域。

到此这篇关于基于Python和openCV实现图像的全景拼接的文章就介绍到这了,更多相关Python openCV实现图像的全景拼接内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python线程池的实现实例
Nov 18 Python
python通过shutil实现快速文件复制的方法
Mar 14 Python
python获取从命令行输入数字的方法
Apr 29 Python
Python爬取当当、京东、亚马逊图书信息代码实例
Dec 09 Python
儿童python练习实例
May 27 Python
Python 3.6 -win64环境安装PIL模块的教程
Jun 20 Python
django2.2安装错误最全的解决方案(小结)
Sep 24 Python
python 矢量数据转栅格数据代码实例
Sep 30 Python
python getpass模块用法及实例详解
Oct 07 Python
Python实现序列化及csv文件读取
Jan 19 Python
python语音识别指南终极版(有这一篇足矣)
Sep 09 Python
Python中正则表达式对单个字符,多个字符和匹配边界等使用
Jan 27 Python
C3 线性化算法与 MRO之Python中的多继承
Python编程super应用场景及示例解析
Python编程源码报错解决方法总结经验分享
Oct 05 #Python
Python编程根据字典列表相同键的值进行合并
Oct 05 #Python
python编程简单几行代码实现视频转换Gif示例
用 Python 定义 Schema 并生成 Parquet 文件详情
Sep 25 #Python
使用pipenv管理python虚拟环境的全过程
Sep 25 #Python
You might like
关于PHP中的Class的几点个人看法
2006/10/09 PHP
PHP中多维数组的foreach遍历示例
2014/06/13 PHP
Yii中render和renderPartial的区别
2014/09/03 PHP
thinkphp使用phpmailer发送邮件的方法
2014/11/24 PHP
PHP随机获取未被微信屏蔽的域名(微信域名检测)
2017/03/19 PHP
PHP7扩展开发之基于函数方式使用lib库的方法详解
2018/01/15 PHP
javascript之dhDataGrid Ver2.0.0代码
2007/07/01 Javascript
基于MooTools的很有创意的滚动条时钟动画
2010/11/14 Javascript
新发现一个骗链接的方法(js读取cookies)
2012/01/11 Javascript
上传的js验证(图片/文件的扩展名)
2013/04/25 Javascript
jquery模拟SELECT下拉框取值效果
2013/10/23 Javascript
浅谈window对象的scrollBy()方法
2015/07/15 Javascript
JS实现带有3D立体感的银灰色竖排折叠菜单代码
2015/10/20 Javascript
进阶之初探nodeJS
2017/01/24 NodeJs
JavaScript函数表达式详解及实例
2017/05/05 Javascript
js实现京东轮播图效果
2017/06/30 Javascript
初识 Vue.js 中的 *.Vue文件
2017/11/22 Javascript
vue实现在表格里,取每行的id的方法
2018/03/09 Javascript
wxpython 学习笔记 第一天
2009/02/09 Python
python中xrange和range的区别
2014/05/13 Python
python在linux中输出带颜色的文字的方法
2014/06/19 Python
python使用pil生成缩略图的方法
2015/03/26 Python
python执行get提交的方法
2015/04/29 Python
Python中的super用法详解
2015/05/28 Python
同时安装Python2 &amp; Python3 cmd下版本自由选择的方法
2017/12/09 Python
pygame游戏之旅 添加游戏暂停功能
2018/11/21 Python
python pexpect ssh 远程登录服务器的方法
2019/02/14 Python
详解python列表生成式和列表生成式器区别
2019/03/27 Python
如何使用Cython对python代码进行加密
2020/07/08 Python
Django后端分离 使用element-ui文件上传方式
2020/07/12 Python
英国电动工具购买网站:Anglia Tool Centre
2017/04/25 全球购物
竞选部门副经理的自荐书范文
2014/02/11 职场文书
产品质量保证书
2014/04/29 职场文书
勤奋学习演讲稿
2014/05/10 职场文书
详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法
2021/04/25 Python
python 对图片进行简单的处理
2021/06/23 Python