Python3 利用face_recognition实现人脸识别的方法


Posted in Python onMarch 13, 2020

前言

之前实践了下face++在线人脸识别版本,这回做一下离线版本。github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现。

官方描述:

face_recognition是一个强大、简单、易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统。本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取、识别、操作人脸。本项目的人脸识别是基于业内领先的C++开源库 dlib中的深度学习模型,用Labeled Faces in the Wild人脸数据集进行测试,有高达99.38%的准确率。但对小孩和亚洲人脸的识别准确率尚待提升。

(关于兼容树莓派,以后有板子了再做一下)

下面两个链接划重点

https://github.com/ageitgey/face_recognition/blob/master/README_Simplified_Chinese.md
https://face-recognition.readthedocs.io/en/latest/face_recognition.html

环境配置

  • ubuntu16.04(其他环境的安装可以参考第一个链接,官方有说明)
  • pycharm(可忽略,怎么舒服怎么来)
  • python3
  • opencv(我的是4.1.2,三点几的版本应该也一样)

实际上只需要安装face_recognition,当然,没有opencv的也需要安装一下opencv

pip3 install face_recognition

图片准备

由于需要做一些图片的比对,因此需要准备一些图片,本文图片取自以下链接

https://www.zhihu.com/question/314169580/answer/872770507

接下来开始操作

官方还有提供命令行的操作(这个没去做),本文不做这个,我们只要是要在python中用face_recognition,因此定位到这一块。

Python3 利用face_recognition实现人脸识别的方法

这个api文档地址就是上面的第二个链接。进去之后可以看到:

Python3 利用face_recognition实现人脸识别的方法

part1.识别图片中的人是谁

代码

# part1
# 识别图片中的人是谁
import face_recognition
known_image = face_recognition.load_image_file("lyf1.jpg")
unknown_image = face_recognition.load_image_file("lyf2.jpg")

lyf_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([lyf_encoding], unknown_encoding)	
# A list of True/False values indicating which known_face_encodings match the face encoding to check

print(type(results))
print(results)

if results[0] == True:
  print("yes")
else:
  print("no")

结果

<class 'list'>
[True]
yes

part2.从图片中找到人脸

代码

# part2
# 从图片中找到人脸(定位人脸位置)

import face_recognition
import cv2

image = face_recognition.load_image_file("lyf1.jpg")

face_locations_useCNN = face_recognition.face_locations(image,model='cnn')
# model ? Which face detection model to use. “hog” is less accurate but faster on CPUs.
# “cnn” is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is “hog”.

face_locations_noCNN=face_recognition.face_locations(image)
# A list of tuples of found face locations in css (top, right, bottom, left) order
# 因为返回值的顺序是这样子的,因此在后面的for循环里面赋值要注意按这个顺序来

print("face_location_useCNN:")
print(face_locations_useCNN)
face_num1=len(face_locations_useCNN)
print(face_num1)    # The number of faces


print("face_location_noCNN:")
print(face_locations_noCNN)
face_num2=len(face_locations_noCNN)
print(face_num2)    # The number of faces
# 到这里为止,可以观察两种情况的坐标和人脸数,一般来说,坐标会不一样,但是检测出来的人脸数应该是一样的
# 也就是说face_num1 = face_num2; face_locations_useCNN 和 face_locations_noCNN 不一样


org = cv2.imread("lyf1.jpg")
img = cv2.imread("lyf1.jpg")
cv2.imshow("lyf1.jpg",img) # 原始图片

# Go to get the data and draw the rectangle
# use CNN
for i in range(0,face_num1):
  top = face_locations_useCNN[i][0]
  right = face_locations_useCNN[i][1]
  bottom = face_locations_useCNN[i][2]
  left = face_locations_useCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(img, start, end, color, thickness)  # opencv 里面画矩形的函数

# Show the result
cv2.imshow("useCNN",img)


# for face_location in face_locations_noCNN:
#
#   # Print the location of each face in this image
#   top, right, bottom, left = face_location
# # 等价于下面的这种写法

for i in range(0,face_num2):
  top = face_locations_noCNN[i][0]
  right = face_locations_noCNN[i][1]
  bottom = face_locations_noCNN[i][2]
  left = face_locations_noCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(org, start, end, color, thickness)

cv2.imshow("no cnn ",org)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果

face_location_useCNN:
[(223, 470, 427, 266)]
1
face_location_noCNN:
[(242, 489, 464, 266)]
1

图片效果大致是这样

Python3 利用face_recognition实现人脸识别的方法

part3.找到人脸并将其裁剪打印出来(使用cnn定位人脸)

代码

# part3
# 找到人脸并将其裁剪打印出来(使用cnn定位人脸)

from PIL import Image
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")

print("I found {} face(s) in this photograph.".format(len(face_locations)))

for face_location in face_locations:
  top, right, bottom, left = face_location
  print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))

  face_image = image[top:bottom, left:right]
  pil_image = Image.fromarray(face_image)
  pil_image.show()

结果

I found 1 face(s) in this photograph.
A face is located at pixel location Top: 205, Left: 276, Bottom: 440, Right: 512

图片效果大致是这样

Python3 利用face_recognition实现人脸识别的方法

part4.识别单张图片中人脸的关键点

代码

# part4 识别单张图片中人脸的关键点

from PIL import Image, ImageDraw
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

# Find all facial features in all the faces in the image
face_landmarks_list = face_recognition.face_landmarks(image)
# print(face_landmarks_list)

print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))

# Create a PIL imagedraw object so we can draw on the picture
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)

for face_landmarks in face_landmarks_list:

  # Print the location of each facial feature in this image
  for facial_feature in face_landmarks.keys():
    print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))

  # Let's trace out each facial feature in the image with a line!
  for facial_feature in face_landmarks.keys():
    d.line(face_landmarks[facial_feature], width=5)

# Show the picture
pil_image.show()

结果

I found 1 face(s) in this photograph.
The left_eyebrow in this face has the following points: [(305, 285), (321, 276), (340, 277), (360, 281), (377, 288)]
The right_eye in this face has the following points: [(422, 313), (432, 303), (446, 302), (459, 305), (449, 312), (435, 314)]
The nose_bridge in this face has the following points: [(394, 309), (394, 331), (395, 354), (396, 375)]
The right_eyebrow in this face has the following points: [(407, 287), (424, 278), (442, 273), (461, 272), (478, 279)]
The bottom_lip in this face has the following points: [(429, 409), (419, 421), (408, 428), (398, 430), (389, 429), (377, 424), (364, 412), (370, 413), (389, 414), (398, 415), (407, 413), (423, 411)]
The chin in this face has the following points: [(289, 295), (291, 323), (296, 351), (303, 378), (315, 403), (332, 428), (353, 448), (376, 464), (400, 467), (422, 461), (441, 444), (459, 425), (473, 403), (484, 377), (490, 351), (493, 323), (493, 296)]
The top_lip in this face has the following points: [(364, 412), (377, 407), (389, 403), (397, 406), (406, 402), (417, 405), (429, 409), (423, 411), (406, 412), (397, 414), (389, 413), (370, 413)]
The left_eye in this face has the following points: [(327, 308), (339, 304), (353, 306), (364, 314), (352, 317), (338, 316)]
The nose_tip in this face has the following points: [(375, 383), (386, 387), (396, 390), (407, 385), (416, 381)]

图片效果

Python3 利用face_recognition实现人脸识别的方法

到此这篇关于Python3 利用face_recognition实现人脸识别的方法的文章就介绍到这了,更多相关Python3 人脸识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python网络编程之TCP通信实例和socketserver框架使用例子
Apr 25 Python
Python Web服务器Tornado使用小结
May 06 Python
python实现折半查找和归并排序算法
Apr 14 Python
Python使用 Beanstalkd 做异步任务处理的方法
Apr 24 Python
python操作excel文件并输出txt文件的实例
Jul 10 Python
python实现kmp算法的实例代码
Apr 03 Python
对Python中 \r, \n, \r\n的彻底理解
Mar 06 Python
Python实现初始化不同的变量类型为空值
Jun 02 Python
解析Python 偏函数用法全方位实现
Jun 26 Python
快速解决pymongo操作mongodb的时区问题
Dec 05 Python
Python深度学习之Pytorch初步使用
May 20 Python
Python包argparse模块常用方法
Jun 04 Python
在django中使用post方法时,需要增加csrftoken的例子
Mar 13 #Python
python 安装教程之Pycharm安装及配置字体主题,换行,自动更新
Mar 13 #Python
详解用Python进行时间序列预测的7种方法
Mar 13 #Python
django-xadmin根据当前登录用户动态设置表单字段默认值方式
Mar 13 #Python
在django项目中导出数据到excel文件并实现下载的功能
Mar 13 #Python
Django choices下拉列表绑定实例
Mar 13 #Python
django model object序列化实例
Mar 13 #Python
You might like
第十二节--类的自动加载
2006/11/16 PHP
php日期操作技巧小结
2016/06/25 PHP
Yii2框架中日志的使用方法分析
2017/05/22 PHP
php实现与python进行socket通信的方法示例
2017/08/30 PHP
给moz-firefox下添加IE方法和属性
2007/04/10 Javascript
jQuery 1.3 和 Validation 验证插件1.5.1
2009/07/09 Javascript
JS链式调用的实现方法
2013/03/07 Javascript
jquery入门必备的基本认识及实例(整理)
2013/06/24 Javascript
上传图片预览JS脚本 Input file图片预览的实现示例
2014/10/23 Javascript
jquery实现图片上传前本地预览功能
2016/05/10 Javascript
轻松搞定js表单验证
2016/10/13 Javascript
Angularjs 动态改变title标题(兼容ios)
2016/12/29 Javascript
详解如何使用Vue2做服务端渲染
2017/03/29 Javascript
Vue组件模板形式实现对象数组数据循环为树形结构(实例代码)
2017/07/31 Javascript
微信小程序反编译的实现
2020/12/10 Javascript
python自动化测试之连接几组测试包实例
2014/09/28 Python
Python实现各种排序算法的代码示例总结
2015/12/11 Python
学习python之编写简单乘法口诀表实现代码
2016/02/27 Python
通过python顺序修改文件名字的方法
2018/07/11 Python
Python Django Vue 项目创建过程详解
2019/07/29 Python
python设置随机种子实例讲解
2019/09/12 Python
浅谈Python中的字符串
2020/06/10 Python
浅谈Python 命令行参数argparse写入图片路径操作
2020/07/12 Python
Python如何将将模块分割成多个文件
2020/08/04 Python
The Hut英国:英国领先的豪华在线百货商店
2019/07/26 全球购物
主要的Ajax框架都有什么
2013/11/14 面试题
商务助理岗位职责
2013/11/13 职场文书
开业庆典策划方案
2014/02/18 职场文书
知识竞赛主持词
2014/03/26 职场文书
员工廉洁自律承诺书
2014/05/26 职场文书
信息合作协议书
2014/10/09 职场文书
医院财务人员岗位职责
2015/04/14 职场文书
赢在中国观后感
2015/06/02 职场文书
红与黑读书笔记
2015/06/29 职场文书
英语读书笔记
2015/07/02 职场文书
vue报错function () { [native code] },无法出现我们想要的内容 Unknown custom element
2022/04/11 Vue.js