Python3 利用face_recognition实现人脸识别的方法


Posted in Python onMarch 13, 2020

前言

之前实践了下face++在线人脸识别版本,这回做一下离线版本。github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现。

官方描述:

face_recognition是一个强大、简单、易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统。本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取、识别、操作人脸。本项目的人脸识别是基于业内领先的C++开源库 dlib中的深度学习模型,用Labeled Faces in the Wild人脸数据集进行测试,有高达99.38%的准确率。但对小孩和亚洲人脸的识别准确率尚待提升。

(关于兼容树莓派,以后有板子了再做一下)

下面两个链接划重点

https://github.com/ageitgey/face_recognition/blob/master/README_Simplified_Chinese.md
https://face-recognition.readthedocs.io/en/latest/face_recognition.html

环境配置

  • ubuntu16.04(其他环境的安装可以参考第一个链接,官方有说明)
  • pycharm(可忽略,怎么舒服怎么来)
  • python3
  • opencv(我的是4.1.2,三点几的版本应该也一样)

实际上只需要安装face_recognition,当然,没有opencv的也需要安装一下opencv

pip3 install face_recognition

图片准备

由于需要做一些图片的比对,因此需要准备一些图片,本文图片取自以下链接

https://www.zhihu.com/question/314169580/answer/872770507

接下来开始操作

官方还有提供命令行的操作(这个没去做),本文不做这个,我们只要是要在python中用face_recognition,因此定位到这一块。

Python3 利用face_recognition实现人脸识别的方法

这个api文档地址就是上面的第二个链接。进去之后可以看到:

Python3 利用face_recognition实现人脸识别的方法

part1.识别图片中的人是谁

代码

# part1
# 识别图片中的人是谁
import face_recognition
known_image = face_recognition.load_image_file("lyf1.jpg")
unknown_image = face_recognition.load_image_file("lyf2.jpg")

lyf_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([lyf_encoding], unknown_encoding)	
# A list of True/False values indicating which known_face_encodings match the face encoding to check

print(type(results))
print(results)

if results[0] == True:
  print("yes")
else:
  print("no")

结果

<class 'list'>
[True]
yes

part2.从图片中找到人脸

代码

# part2
# 从图片中找到人脸(定位人脸位置)

import face_recognition
import cv2

image = face_recognition.load_image_file("lyf1.jpg")

face_locations_useCNN = face_recognition.face_locations(image,model='cnn')
# model ? Which face detection model to use. “hog” is less accurate but faster on CPUs.
# “cnn” is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is “hog”.

face_locations_noCNN=face_recognition.face_locations(image)
# A list of tuples of found face locations in css (top, right, bottom, left) order
# 因为返回值的顺序是这样子的,因此在后面的for循环里面赋值要注意按这个顺序来

print("face_location_useCNN:")
print(face_locations_useCNN)
face_num1=len(face_locations_useCNN)
print(face_num1)    # The number of faces


print("face_location_noCNN:")
print(face_locations_noCNN)
face_num2=len(face_locations_noCNN)
print(face_num2)    # The number of faces
# 到这里为止,可以观察两种情况的坐标和人脸数,一般来说,坐标会不一样,但是检测出来的人脸数应该是一样的
# 也就是说face_num1 = face_num2; face_locations_useCNN 和 face_locations_noCNN 不一样


org = cv2.imread("lyf1.jpg")
img = cv2.imread("lyf1.jpg")
cv2.imshow("lyf1.jpg",img) # 原始图片

# Go to get the data and draw the rectangle
# use CNN
for i in range(0,face_num1):
  top = face_locations_useCNN[i][0]
  right = face_locations_useCNN[i][1]
  bottom = face_locations_useCNN[i][2]
  left = face_locations_useCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(img, start, end, color, thickness)  # opencv 里面画矩形的函数

# Show the result
cv2.imshow("useCNN",img)


# for face_location in face_locations_noCNN:
#
#   # Print the location of each face in this image
#   top, right, bottom, left = face_location
# # 等价于下面的这种写法

for i in range(0,face_num2):
  top = face_locations_noCNN[i][0]
  right = face_locations_noCNN[i][1]
  bottom = face_locations_noCNN[i][2]
  left = face_locations_noCNN[i][3]

  start = (left, top)
  end = (right, bottom)

  color = (0,255,255)
  thickness = 2
  cv2.rectangle(org, start, end, color, thickness)

cv2.imshow("no cnn ",org)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果

face_location_useCNN:
[(223, 470, 427, 266)]
1
face_location_noCNN:
[(242, 489, 464, 266)]
1

图片效果大致是这样

Python3 利用face_recognition实现人脸识别的方法

part3.找到人脸并将其裁剪打印出来(使用cnn定位人脸)

代码

# part3
# 找到人脸并将其裁剪打印出来(使用cnn定位人脸)

from PIL import Image
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")

print("I found {} face(s) in this photograph.".format(len(face_locations)))

for face_location in face_locations:
  top, right, bottom, left = face_location
  print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))

  face_image = image[top:bottom, left:right]
  pil_image = Image.fromarray(face_image)
  pil_image.show()

结果

I found 1 face(s) in this photograph.
A face is located at pixel location Top: 205, Left: 276, Bottom: 440, Right: 512

图片效果大致是这样

Python3 利用face_recognition实现人脸识别的方法

part4.识别单张图片中人脸的关键点

代码

# part4 识别单张图片中人脸的关键点

from PIL import Image, ImageDraw
import face_recognition

# Load the jpg file into a numpy array
image = face_recognition.load_image_file("lyf1.jpg")

# Find all facial features in all the faces in the image
face_landmarks_list = face_recognition.face_landmarks(image)
# print(face_landmarks_list)

print("I found {} face(s) in this photograph.".format(len(face_landmarks_list)))

# Create a PIL imagedraw object so we can draw on the picture
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)

for face_landmarks in face_landmarks_list:

  # Print the location of each facial feature in this image
  for facial_feature in face_landmarks.keys():
    print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature]))

  # Let's trace out each facial feature in the image with a line!
  for facial_feature in face_landmarks.keys():
    d.line(face_landmarks[facial_feature], width=5)

# Show the picture
pil_image.show()

结果

I found 1 face(s) in this photograph.
The left_eyebrow in this face has the following points: [(305, 285), (321, 276), (340, 277), (360, 281), (377, 288)]
The right_eye in this face has the following points: [(422, 313), (432, 303), (446, 302), (459, 305), (449, 312), (435, 314)]
The nose_bridge in this face has the following points: [(394, 309), (394, 331), (395, 354), (396, 375)]
The right_eyebrow in this face has the following points: [(407, 287), (424, 278), (442, 273), (461, 272), (478, 279)]
The bottom_lip in this face has the following points: [(429, 409), (419, 421), (408, 428), (398, 430), (389, 429), (377, 424), (364, 412), (370, 413), (389, 414), (398, 415), (407, 413), (423, 411)]
The chin in this face has the following points: [(289, 295), (291, 323), (296, 351), (303, 378), (315, 403), (332, 428), (353, 448), (376, 464), (400, 467), (422, 461), (441, 444), (459, 425), (473, 403), (484, 377), (490, 351), (493, 323), (493, 296)]
The top_lip in this face has the following points: [(364, 412), (377, 407), (389, 403), (397, 406), (406, 402), (417, 405), (429, 409), (423, 411), (406, 412), (397, 414), (389, 413), (370, 413)]
The left_eye in this face has the following points: [(327, 308), (339, 304), (353, 306), (364, 314), (352, 317), (338, 316)]
The nose_tip in this face has the following points: [(375, 383), (386, 387), (396, 390), (407, 385), (416, 381)]

图片效果

Python3 利用face_recognition实现人脸识别的方法

到此这篇关于Python3 利用face_recognition实现人脸识别的方法的文章就介绍到这了,更多相关Python3 人脸识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用python实现省市三级菜单效果
Jan 20 Python
CentOS 7下Python 2.7升级至Python3.6.1的实战教程
Jul 06 Python
python利用正则表达式搜索单词示例代码
Sep 24 Python
Python批量更改文件名的实现方法
Oct 29 Python
在Python程序员面试中被问的最多的10道题
Dec 05 Python
python使用turtle库与random库绘制雪花
Jun 22 Python
python看某个模块的版本方法
Oct 16 Python
python简单贪吃蛇开发
Jan 28 Python
python程序快速缩进多行代码方法总结
Jun 23 Python
使用django实现一个代码发布系统
Jul 18 Python
Python3 xml.etree.ElementTree支持的XPath语法详解
Mar 06 Python
python3代码输出嵌套式对象实例详解
Dec 03 Python
在django中使用post方法时,需要增加csrftoken的例子
Mar 13 #Python
python 安装教程之Pycharm安装及配置字体主题,换行,自动更新
Mar 13 #Python
详解用Python进行时间序列预测的7种方法
Mar 13 #Python
django-xadmin根据当前登录用户动态设置表单字段默认值方式
Mar 13 #Python
在django项目中导出数据到excel文件并实现下载的功能
Mar 13 #Python
Django choices下拉列表绑定实例
Mar 13 #Python
django model object序列化实例
Mar 13 #Python
You might like
乱谈我对耳机、音箱的感受
2021/03/02 无线电
PHP导出EXCEL快速开发指南--PHPEXCEL的使用详解
2013/06/03 PHP
smarty简单应用实例
2015/11/03 PHP
CI框架中$this-&gt;load-&gt;library()用法分析
2016/05/18 PHP
PHP实践教程之过滤、验证、转义与密码详解
2017/07/24 PHP
PHP substr()函数参数解释及用法讲解
2017/11/23 PHP
模仿JQuery.extend函数扩展自己对象的js代码
2009/12/09 Javascript
Jsonp 跨域的原理以及Jquery的解决方案
2011/06/27 Javascript
javascript禁用Tab键脚本实例
2013/11/22 Javascript
jquery中get和post的简单实例
2014/02/04 Javascript
JS中FRAME的操作问题实例分析
2014/10/21 Javascript
javascript实现table表格隔行变色的方法
2015/05/13 Javascript
JQuery复制DOM节点的方法
2015/06/11 Javascript
js 获取当前web应用的上下文路径实现方法
2016/08/19 Javascript
浅谈jquery采用attr修改form表单enctype不起作用的问题
2016/11/25 Javascript
JS中的回调函数实例浅析
2018/03/21 Javascript
微信小程序实现登录遮罩效果
2018/11/01 Javascript
详解Vue demo实现商品列表的展示
2019/05/07 Javascript
React-redux实现小案例(todolist)的过程
2019/09/29 Javascript
vue设置默认首页的操作
2020/08/12 Javascript
vue实现路由懒加载的3种方法示例
2020/09/01 Javascript
[03:11]不朽宝藏三外观展示
2020/09/18 DOTA
python实现向ppt文件里插入新幻灯片页面的方法
2015/04/28 Python
Python实现翻转数组功能示例
2018/01/12 Python
python3 sorted 如何实现自定义排序标准
2020/03/12 Python
python 字典item与iteritems的区别详解
2020/04/25 Python
利用python中的matplotlib打印混淆矩阵实例
2020/06/16 Python
通过CSS3的object-fit来调整图片适配尺寸的技巧简介
2016/02/27 HTML / CSS
CSS3中各种颜色属性的使用教程
2016/05/17 HTML / CSS
详解css position 5种不同的值的用法
2019/07/30 HTML / CSS
美国花园雕像和家居装饰网上商店:Design Toscano
2019/03/09 全球购物
文明宿舍获奖感言
2014/02/07 职场文书
岗位安全生产责任书
2014/07/28 职场文书
2015年行政部工作总结
2015/04/28 职场文书
德生2P3收音机开箱评测
2022/04/30 无线电
Redis入门基础常用操作命令整理
2022/06/01 Redis