Numpy中对向量、矩阵的使用详解


Posted in Python onOctober 29, 2019

在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作。

归纳一下,下面的代码主要做了这些事:

  • 创建一个向量
  • 创建一个矩阵
  • 创建一个稀疏矩阵
  • 选择元素
  • 展示一个矩阵的属性
  • 对多个元素同时应用某种操作
  • 找到最大值和最小值
  • 计算平均值、方差和标准差
  • 矩阵变形
  • 转置向量或矩阵
  • 展开一个矩阵
  • 计算矩阵的秩
  • 计算行列式
  • 获取矩阵的对角线元素
  • 计算矩阵的迹
  • 计算特征值和特征向量
  • 计算点积
  • 矩阵的相加相减
  • 矩阵的乘法
  • 计算矩阵的逆

一起来看代码吧:

# 加载numpy库
import numpy as np

from scipy import sparse

# 创建一个一维数组表示一个行向量
vector_row = np.array([1, 2, 3])

# 创建一个一维数组表示一个列向量
vector_column = np.array([[1], [2], [3]])

# 创建一个二维数组表示一个矩阵
matrix1 = np.array([[1, 2], [1, 2], [1, 2]])

# 利用Numpy内置矩阵数据结构
matrix1_object = np.mat([[1, 2], [1, 2], [1, 2]])

# 创建一个新的矩阵
matrix2 = np.array([[0, 0], [0, 1], [3, 0]])

# 创建一个压缩的稀疏行(CSR)矩阵
matrix2_sparse = sparse.csc_matrix(matrix2)

# 查看稀疏矩阵
print(matrix2_sparse)

# 创建一个更大的矩阵
matrix_large = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
             [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

# 创建一个CSR矩阵
matrix_large_sparse = sparse.csr_matrix(matrix_large)

# 查看更大的稀疏矩阵
print(matrix_large_sparse)

# 创建一个行向量
vector = np.array([1, 2, 3, 4, 5, 6])

# 创建矩阵
matrix_vector = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 选择向量的第三个元素
print(vector[2])

# 选择第二行第二列
print(matrix_vector[1, 1])

# 选取一个向量的所有元素
print(vector[:])

# 选取从0开始一直到第3个(包含第3个)元素
print(vector[:3])

# 选取第3个元素之后的全部元素
print(vector[3:])

# 选取最后一个元素
print(vector[-1])

# 选取矩阵的第1行和第2行以及所有列
print(matrix_vector[:2, :])

# 选取所有行以及第2列
print(matrix_vector[:, 1:2])

# 选取所有行以及第2列并转换成一个新的行向量
print(matrix_vector[:, 1])

# 创建新的矩阵
matrix3 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

# 查看行数和列数
print(matrix3.shape)

# 查看元素数量
print(matrix3.size)

# 查看维数
print(matrix3.ndim)

# 下面使用的矩阵是matrix_vector
# 创建一个匿名函数,返回输入值加上100以后的值
add_100 = lambda i: i+100

# 创建向量转化函数
vectorized_add_100 = np.vectorize(add_100)

# 对矩阵的所有元素应用这个函数
print(vectorized_add_100(matrix_vector))

# 用后矩阵本身不变
print(matrix_vector)

# 连续使用
print(vectorized_add_100(vectorized_add_100(matrix_vector)))

# 返回最大的元素
print(np.max(matrix_vector))

# 返回最小元素
print(np.min(matrix_vector))

# 找到每一列的最大元素
print(np.max(matrix_vector, axis=0))

# 找到每一行最大的元素
print(np.max(matrix_vector, axis=1))

# 返回平均值
print(np.mean(matrix_vector))

# 返回方差
print(np.var(matrix_vector))

# 返回标准差
print(np.std(matrix_vector))

# 求每一列的平均值
print(np.mean(matrix_vector, axis=0))

# 求每一行的方差
print(np.var(matrix_vector, axis=1))

# 将matrix3矩阵变为2×6矩阵
matrix4 = matrix3.reshape(2, 6)
print(matrix4)

# 上面的变形要求前后元素个数相同,且不会改变元素个数
print(matrix4.size)

# reshape时传入参数-1意味着可以根据需要填充元素
print(matrix3.reshape(1, -1))

# reshape如果提供一个整数,那么reshape会返回一个长度为该整数值的一维数组
print(matrix3.reshape(12))

# 转置matrix_vector矩阵
print(matrix_vector.T)

# 严格地讲,向量是不能被转置的
print(vector.T)

# 转置向量通常指二维数组表示形式下将行向量转换为列向量或者反向转换
print(np.array([[1, 2, 3, 4, 5, 6]]).T)

# 将matrix_vector矩阵展开
print(matrix_vector.flatten())

# 将矩阵展开的另一种策略是利用reshape创建一个行向量
print(matrix_vector.reshape(1, -1))

# 创建用于求秩的新矩阵
matrix5 = np.array([[1, 1, 1], [1, 1, 10], [1, 1, 15]])

# 计算矩阵matrix5的秩
print(np.linalg.matrix_rank(matrix5))

# 创建用于行列式求解的新矩阵
matrix6 = np.array([[1, 2, 3], [2, 4, 6], [3, 8, 9]])

# 求解矩阵matrix6的行列式
print(np.linalg.det(matrix6))

# 返回矩阵的对角线元素
print(matrix6.diagonal())

# 返回主对角线向上偏移量为1的对角线元素
print(matrix6.diagonal(offset=1))

# 返回主对角线向下偏移量为1的对角线元素
print(matrix6.diagonal(offset=-1))

# 返回矩阵的迹
print(matrix6.trace())

# 求迹的另外的方法(返回对角线元素并求和)
print(sum(matrix6.diagonal()))

# 创建一个求解特征值、特征向量的矩阵
matrix7 = np.array([[1, -1, 3], [1, 1, 6], [3, 8, 9]])

# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(matrix7)

# 查看特征值
print(eigenvalues)

# 查看特征向量
print(eigenvectors)

# 构造两个点积(数量积)所需向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
print(np.dot(vector_a, vector_b))

# Python 3.5+ 版本可以这样求解点积
print(vector_a @ vector_b)

# 构造两个可用于加减的矩阵
matrix_a = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 2]])
matrix_b = np.array([[1, 3, 1], [1, 3, 1], [1, 3, 8]])

# 两矩阵相加
print(np.add(matrix_a, matrix_b))

# 两矩阵相减
print(np.subtract(matrix_a, matrix_b))

# 直接用+/-也可以做矩阵加减
print(matrix_a + matrix_b)
print(matrix_a - matrix_b)

# 构造两个可用于乘法的小矩阵
matrix_c = np.array([[1, 1], [1, 2]])
matrix_d = np.array([[1, 3], [1, 2]])

# 两矩阵相乘
print(np.dot(matrix_c, matrix_d))

# Python 3.5+ 版本可以这样求解矩阵乘法
print(matrix_c @ matrix_d)

# 我们也可以把两矩阵对应元素相乘,而非矩阵乘法
print(matrix_c * matrix_d)

# 创建一个用于求逆的矩阵
matrix8 = np.array([[1, 4], [2, 5]])

# 计算矩阵的逆
print(np.linalg.inv(matrix8))

# 验证一个矩阵和它的逆矩阵相乘等于I(单位矩阵)
print(matrix8 @ np.linalg.inv(matrix8))

测试结果:

  (2, 0) 3
  (1, 1) 1
  (1, 1) 1
  (2, 0) 3
3
5
[1 2 3 4 5 6]
[1 2 3]
[4 5 6]
6
[[1 2 3]
 [4 5 6]]
[[2]
 [5]
 [8]]
[2 5 8]
(3, 4)
12
2
[[101 102 103]
 [104 105 106]
 [107 108 109]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]
[[201 202 203]
 [204 205 206]
 [207 208 209]]
9
1
[7 8 9]
[3 6 9]
5.0
6.666666666666667
2.581988897471611
[4. 5. 6.]
[0.66666667 0.66666667 0.66666667]
[[ 1  2  3  4  5  6]
 [ 7  8  9 10 11 12]]
12
[[ 1  2  3  4  5  6  7  8  9 10 11 12]]
[ 1  2  3  4  5  6  7  8  9 10 11 12]
[[1 4 7]
 [2 5 8]
 [3 6 9]]
[1 2 3 4 5 6]
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]]
[1 2 3 4 5 6 7 8 9]
[[1 2 3 4 5 6 7 8 9]]
2
0.0
[1 4 9]
[2 6]
[2 8]
14
14
[13.55075847  0.74003145 -3.29078992]
[[-0.17622017 -0.96677403 -0.53373322]
 [-0.435951    0.2053623  -0.64324848]
 [-0.88254925  0.15223105  0.54896288]]
32
32
[[ 2  4  2]
 [ 2  4  2]
 [ 2  4 10]]
[[ 0 -2  0]
 [ 0 -2  0]
 [ 0 -2 -6]]
[[ 2  4  2]
 [ 2  4  2]
 [ 2  4 10]]
[[ 0 -2  0]
 [ 0 -2  0]
 [ 0 -2 -6]]
[[2 5]
 [3 7]]
[[2 5]
 [3 7]]
[[1 3]
 [1 4]]
[[-1.66666667  1.33333333]
 [ 0.66666667 -0.33333333]]
[[1.00000000e+00 0.00000000e+00]
 [1.11022302e-16 1.00000000e+00]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
比较详细Python正则表达式操作指南(re使用)
Sep 06 Python
python创建和删除目录的方法
Apr 29 Python
Python找出list中最常出现元素的方法
Jun 14 Python
Python实现代码统计工具(终极篇)
Jul 04 Python
Python 中迭代器与生成器实例详解
Mar 29 Python
python里使用正则的findall函数的实例详解
Oct 19 Python
python中set()函数简介及实例解析
Jan 09 Python
django 通过ajax完成邮箱用户注册、激活账号的方法
Apr 17 Python
用python代码将tiff图片存储到jpg的方法
Dec 04 Python
使用python 的matplotlib 画轨道实例
Jan 19 Python
Python多线程正确用法实例解析
May 30 Python
Python3使用 GitLab API 进行批量合并分支
Oct 15 Python
pygame实现俄罗斯方块游戏(AI篇2)
Oct 29 #Python
pygame实现俄罗斯方块游戏(AI篇1)
Oct 29 #Python
基于Django统计博客文章阅读量
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇3)
Oct 29 #Python
python安装gdal的两种方法
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇2)
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇1)
Oct 29 #Python
You might like
PHP中如何判断AJAX提交的数据
2012/02/05 PHP
php使用ffmpeg向视频中添加文字字幕的实现方法
2016/05/23 PHP
php使用get_class_methods()函数获取分类的方法
2016/07/20 PHP
PHP内存缓存功能memcached示例
2016/10/19 PHP
PHP SESSION机制的理解与实例
2019/03/22 PHP
使用laravel指定日志文件记录任意日志
2019/10/17 PHP
laravel框架使用FormRequest进行表单验证,验证异常返回JSON操作示例
2020/02/18 PHP
JQuery入门—编写一个简单的JQuery应用案例
2013/01/03 Javascript
JavaScript创建一个欢迎cookie弹出窗实现代码
2013/03/15 Javascript
jQuery 遍历- 关于closest() 的方法介绍以及与parents()的方法区别分析
2013/04/26 Javascript
javascript中数组的concat()方法使用介绍
2013/12/18 Javascript
JavaScript提高性能知识点汇总
2016/01/15 Javascript
Vue.js基础知识汇总
2016/04/27 Javascript
浅谈js中的in-for循环
2016/06/28 Javascript
了解VUE的render函数的使用
2017/06/08 Javascript
微信小程序商品到详情的实现
2017/06/27 Javascript
详解webpack+gulp实现自动构建部署
2017/06/29 Javascript
node.js学习之事件模块Events的使用示例
2017/09/28 Javascript
vue2.0 自定义 饼状图 (Echarts)组件的方法
2018/03/02 Javascript
layer.confirm取消按钮绑定事件的方法
2018/08/17 Javascript
javascript中的闭包概念与用法实践分析
2019/07/26 Javascript
js实现菜单跳转效果
2020/12/11 Javascript
Python中字典的基本知识初步介绍
2015/05/21 Python
python实现DES加密解密方法实例详解
2015/06/30 Python
对Python的Django框架中的项目进行单元测试的方法
2016/04/11 Python
详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别
2017/06/23 Python
Python实现JSON反序列化类对象的示例
2018/01/31 Python
Python操作json的方法实例分析
2018/12/06 Python
Python自定义函数计算给定日期是该年第几天的方法示例
2019/05/30 Python
Python学习工具jupyter notebook安装及用法解析
2020/10/23 Python
个人剖析材料范文
2014/09/30 职场文书
小学教师求职信范文
2015/03/20 职场文书
2015年社区综治工作总结
2015/04/21 职场文书
2015年监理个人工作总结
2015/05/23 职场文书
JavaScript实现复选框全选功能
2021/04/11 Javascript
聊聊Python String型列表求最值的问题
2022/01/18 Python