Numpy中对向量、矩阵的使用详解


Posted in Python onOctober 29, 2019

在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作。

归纳一下,下面的代码主要做了这些事:

  • 创建一个向量
  • 创建一个矩阵
  • 创建一个稀疏矩阵
  • 选择元素
  • 展示一个矩阵的属性
  • 对多个元素同时应用某种操作
  • 找到最大值和最小值
  • 计算平均值、方差和标准差
  • 矩阵变形
  • 转置向量或矩阵
  • 展开一个矩阵
  • 计算矩阵的秩
  • 计算行列式
  • 获取矩阵的对角线元素
  • 计算矩阵的迹
  • 计算特征值和特征向量
  • 计算点积
  • 矩阵的相加相减
  • 矩阵的乘法
  • 计算矩阵的逆

一起来看代码吧:

# 加载numpy库
import numpy as np

from scipy import sparse

# 创建一个一维数组表示一个行向量
vector_row = np.array([1, 2, 3])

# 创建一个一维数组表示一个列向量
vector_column = np.array([[1], [2], [3]])

# 创建一个二维数组表示一个矩阵
matrix1 = np.array([[1, 2], [1, 2], [1, 2]])

# 利用Numpy内置矩阵数据结构
matrix1_object = np.mat([[1, 2], [1, 2], [1, 2]])

# 创建一个新的矩阵
matrix2 = np.array([[0, 0], [0, 1], [3, 0]])

# 创建一个压缩的稀疏行(CSR)矩阵
matrix2_sparse = sparse.csc_matrix(matrix2)

# 查看稀疏矩阵
print(matrix2_sparse)

# 创建一个更大的矩阵
matrix_large = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
             [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

# 创建一个CSR矩阵
matrix_large_sparse = sparse.csr_matrix(matrix_large)

# 查看更大的稀疏矩阵
print(matrix_large_sparse)

# 创建一个行向量
vector = np.array([1, 2, 3, 4, 5, 6])

# 创建矩阵
matrix_vector = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 选择向量的第三个元素
print(vector[2])

# 选择第二行第二列
print(matrix_vector[1, 1])

# 选取一个向量的所有元素
print(vector[:])

# 选取从0开始一直到第3个(包含第3个)元素
print(vector[:3])

# 选取第3个元素之后的全部元素
print(vector[3:])

# 选取最后一个元素
print(vector[-1])

# 选取矩阵的第1行和第2行以及所有列
print(matrix_vector[:2, :])

# 选取所有行以及第2列
print(matrix_vector[:, 1:2])

# 选取所有行以及第2列并转换成一个新的行向量
print(matrix_vector[:, 1])

# 创建新的矩阵
matrix3 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

# 查看行数和列数
print(matrix3.shape)

# 查看元素数量
print(matrix3.size)

# 查看维数
print(matrix3.ndim)

# 下面使用的矩阵是matrix_vector
# 创建一个匿名函数,返回输入值加上100以后的值
add_100 = lambda i: i+100

# 创建向量转化函数
vectorized_add_100 = np.vectorize(add_100)

# 对矩阵的所有元素应用这个函数
print(vectorized_add_100(matrix_vector))

# 用后矩阵本身不变
print(matrix_vector)

# 连续使用
print(vectorized_add_100(vectorized_add_100(matrix_vector)))

# 返回最大的元素
print(np.max(matrix_vector))

# 返回最小元素
print(np.min(matrix_vector))

# 找到每一列的最大元素
print(np.max(matrix_vector, axis=0))

# 找到每一行最大的元素
print(np.max(matrix_vector, axis=1))

# 返回平均值
print(np.mean(matrix_vector))

# 返回方差
print(np.var(matrix_vector))

# 返回标准差
print(np.std(matrix_vector))

# 求每一列的平均值
print(np.mean(matrix_vector, axis=0))

# 求每一行的方差
print(np.var(matrix_vector, axis=1))

# 将matrix3矩阵变为2×6矩阵
matrix4 = matrix3.reshape(2, 6)
print(matrix4)

# 上面的变形要求前后元素个数相同,且不会改变元素个数
print(matrix4.size)

# reshape时传入参数-1意味着可以根据需要填充元素
print(matrix3.reshape(1, -1))

# reshape如果提供一个整数,那么reshape会返回一个长度为该整数值的一维数组
print(matrix3.reshape(12))

# 转置matrix_vector矩阵
print(matrix_vector.T)

# 严格地讲,向量是不能被转置的
print(vector.T)

# 转置向量通常指二维数组表示形式下将行向量转换为列向量或者反向转换
print(np.array([[1, 2, 3, 4, 5, 6]]).T)

# 将matrix_vector矩阵展开
print(matrix_vector.flatten())

# 将矩阵展开的另一种策略是利用reshape创建一个行向量
print(matrix_vector.reshape(1, -1))

# 创建用于求秩的新矩阵
matrix5 = np.array([[1, 1, 1], [1, 1, 10], [1, 1, 15]])

# 计算矩阵matrix5的秩
print(np.linalg.matrix_rank(matrix5))

# 创建用于行列式求解的新矩阵
matrix6 = np.array([[1, 2, 3], [2, 4, 6], [3, 8, 9]])

# 求解矩阵matrix6的行列式
print(np.linalg.det(matrix6))

# 返回矩阵的对角线元素
print(matrix6.diagonal())

# 返回主对角线向上偏移量为1的对角线元素
print(matrix6.diagonal(offset=1))

# 返回主对角线向下偏移量为1的对角线元素
print(matrix6.diagonal(offset=-1))

# 返回矩阵的迹
print(matrix6.trace())

# 求迹的另外的方法(返回对角线元素并求和)
print(sum(matrix6.diagonal()))

# 创建一个求解特征值、特征向量的矩阵
matrix7 = np.array([[1, -1, 3], [1, 1, 6], [3, 8, 9]])

# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(matrix7)

# 查看特征值
print(eigenvalues)

# 查看特征向量
print(eigenvectors)

# 构造两个点积(数量积)所需向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
print(np.dot(vector_a, vector_b))

# Python 3.5+ 版本可以这样求解点积
print(vector_a @ vector_b)

# 构造两个可用于加减的矩阵
matrix_a = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 2]])
matrix_b = np.array([[1, 3, 1], [1, 3, 1], [1, 3, 8]])

# 两矩阵相加
print(np.add(matrix_a, matrix_b))

# 两矩阵相减
print(np.subtract(matrix_a, matrix_b))

# 直接用+/-也可以做矩阵加减
print(matrix_a + matrix_b)
print(matrix_a - matrix_b)

# 构造两个可用于乘法的小矩阵
matrix_c = np.array([[1, 1], [1, 2]])
matrix_d = np.array([[1, 3], [1, 2]])

# 两矩阵相乘
print(np.dot(matrix_c, matrix_d))

# Python 3.5+ 版本可以这样求解矩阵乘法
print(matrix_c @ matrix_d)

# 我们也可以把两矩阵对应元素相乘,而非矩阵乘法
print(matrix_c * matrix_d)

# 创建一个用于求逆的矩阵
matrix8 = np.array([[1, 4], [2, 5]])

# 计算矩阵的逆
print(np.linalg.inv(matrix8))

# 验证一个矩阵和它的逆矩阵相乘等于I(单位矩阵)
print(matrix8 @ np.linalg.inv(matrix8))

测试结果:

  (2, 0) 3
  (1, 1) 1
  (1, 1) 1
  (2, 0) 3
3
5
[1 2 3 4 5 6]
[1 2 3]
[4 5 6]
6
[[1 2 3]
 [4 5 6]]
[[2]
 [5]
 [8]]
[2 5 8]
(3, 4)
12
2
[[101 102 103]
 [104 105 106]
 [107 108 109]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]
[[201 202 203]
 [204 205 206]
 [207 208 209]]
9
1
[7 8 9]
[3 6 9]
5.0
6.666666666666667
2.581988897471611
[4. 5. 6.]
[0.66666667 0.66666667 0.66666667]
[[ 1  2  3  4  5  6]
 [ 7  8  9 10 11 12]]
12
[[ 1  2  3  4  5  6  7  8  9 10 11 12]]
[ 1  2  3  4  5  6  7  8  9 10 11 12]
[[1 4 7]
 [2 5 8]
 [3 6 9]]
[1 2 3 4 5 6]
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]]
[1 2 3 4 5 6 7 8 9]
[[1 2 3 4 5 6 7 8 9]]
2
0.0
[1 4 9]
[2 6]
[2 8]
14
14
[13.55075847  0.74003145 -3.29078992]
[[-0.17622017 -0.96677403 -0.53373322]
 [-0.435951    0.2053623  -0.64324848]
 [-0.88254925  0.15223105  0.54896288]]
32
32
[[ 2  4  2]
 [ 2  4  2]
 [ 2  4 10]]
[[ 0 -2  0]
 [ 0 -2  0]
 [ 0 -2 -6]]
[[ 2  4  2]
 [ 2  4  2]
 [ 2  4 10]]
[[ 0 -2  0]
 [ 0 -2  0]
 [ 0 -2 -6]]
[[2 5]
 [3 7]]
[[2 5]
 [3 7]]
[[1 3]
 [1 4]]
[[-1.66666667  1.33333333]
 [ 0.66666667 -0.33333333]]
[[1.00000000e+00 0.00000000e+00]
 [1.11022302e-16 1.00000000e+00]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python统计文本文件内单词数量的方法
May 30 Python
Python3实现的爬虫爬取数据并存入mysql数据库操作示例
Jun 06 Python
使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法
Jun 22 Python
Python Flask前后端Ajax交互的方法示例
Jul 31 Python
Python unittest单元测试框架总结
Sep 08 Python
python 使用re.search()筛选后 选取部分结果的方法
Nov 28 Python
python 使用正则表达式按照多个空格分割字符的实例
Dec 20 Python
python中yield的用法详解——最简单,最清晰的解释
Apr 04 Python
关于不懂Chromedriver如何配置环境变量问题解决方法
Jun 12 Python
Python基于BeautifulSoup和requests实现的爬虫功能示例
Aug 02 Python
python getopt模块使用实例解析
Dec 18 Python
Python3.7安装pyaudio教程解析
Jul 24 Python
pygame实现俄罗斯方块游戏(AI篇2)
Oct 29 #Python
pygame实现俄罗斯方块游戏(AI篇1)
Oct 29 #Python
基于Django统计博客文章阅读量
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇3)
Oct 29 #Python
python安装gdal的两种方法
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇2)
Oct 29 #Python
pygame实现俄罗斯方块游戏(基础篇1)
Oct 29 #Python
You might like
mysql 的 like 问题,超强毕杀记!!!
2007/01/18 PHP
php动态实现表格跨行跨列实现代码
2012/11/06 PHP
PHP关联数组的10个操作技巧
2013/01/21 PHP
web server使用php生成web页面的三种方法总结
2013/10/28 PHP
Laravel 实现数据软删除功能
2019/08/21 PHP
JavaScript实现禁止后退的方法
2006/12/27 Javascript
Flash对联广告的关闭按钮讨论
2007/01/30 Javascript
Div Select挡住的解决办法
2008/08/07 Javascript
javascript中基本类型和引用类型的区别分析
2015/05/12 Javascript
轻松掌握JavaScript单例模式
2016/08/25 Javascript
jquery uploadify隐藏上传进度的实现方法
2017/02/06 Javascript
js实现textarea限制输入字数
2017/02/13 Javascript
详解Angular-cli生成组件修改css成less或sass的实例
2017/07/27 Javascript
如何选择适合你的JavaScript框架
2017/11/20 Javascript
对vue里函数的调用顺序介绍
2018/03/17 Javascript
几个你不知道的技巧助你写出更优雅的vue.js代码
2018/06/11 Javascript
vue 实现模糊检索并根据其他字符的首字母顺序排列
2019/09/19 Javascript
Vue解析剪切板图片并实现发送功能
2020/02/04 Javascript
JS使用正则表达式实现常用的表单验证功能分析
2020/04/30 Javascript
如何手写简易的 Vue Router
2020/10/10 Javascript
np.random.seed() 的使用详解
2020/01/14 Python
Django中从mysql数据库中获取数据传到echarts方式
2020/04/07 Python
python 等差数列末项计算方式
2020/05/03 Python
Python将字典转换为XML的方法
2020/08/01 Python
html5的canvas实现3d雪花飘舞效果
2013/12/27 HTML / CSS
ReVive利维肤美国官网:RéVive Skincare
2018/04/18 全球购物
澳大利亚百货商店中销量第一的商务衬衫品牌:Van Heusen
2018/07/26 全球购物
如何写出高性能的JSP和Servlet
2013/01/22 面试题
企业家王石演讲稿:坚持与放下
2014/04/27 职场文书
大队干部竞选演讲稿
2014/04/28 职场文书
房屋过户委托书范本
2014/10/07 职场文书
新闻人物通讯稿
2014/10/09 职场文书
2014年语文教师工作总结
2014/12/18 职场文书
环保建议书范文
2015/09/14 职场文书
《钢铁是怎样炼成的》高中读后感
2019/08/07 职场文书
如何利用Python实现n*n螺旋矩阵
2022/01/18 Python