Win10系统下安装labelme及json文件批量转化方法


Posted in Python onJuly 30, 2019

一、安装环境:windows10,anaconda3,python3.6

由于框架maskrcnn需要json数据集,在没安装labelme环境和跑深度学习之前,我安装的是anaconda3,其中pyhton是3.7版本的,经网上查阅资料,经过一番查找资料,发现,原来在2019年,TensorFlow还不支持python3.7,所以,迫于无奈,我只能乖乖把python的版本退回到3.6版本,具体步骤也很简单。就是打开anaconda prompt ,然后输入conda install python=3.6,然后等待提示(y/n),输入y,等待十几分钟,就会提示done,这样的话,就表示python3.7已经退回到python3.6了。(经过尝试这种方法在我这里没有行得通,可能跟网速有关,又尝试了另一种方法,有兴趣的可以尝试一下。)索性就把labelme安装到3.6中了。

二、安装过程:

1、管理员身份打开 anaconda prompt

2、输入命令:conda create --name=labelme python=3.6

3、输入命令:activate labelme

4、输入命令:pip install pyqt5,pip install pyside2(自己刚开始没有安装pyside2,运行 \anaconda安装目录\envs\labelme\Scripts\label_json_to_dataset.exe 会出现module "pyside"缺失错误)

5、输入命令:pip install labelme(由于网络原因或者库的地址,经常运行一半出现错误,不要气馁,多执行几次)

6、输入命令:labelme 即可打开labelme。如下:

Win10系统下安装labelme及json文件批量转化方法

安装完成后,需要使用再次启动labelme。则需要重新打开anaconda prompt,输入activate labelme,进入labelme环境。再输入命令: labelme 即可

三、用labelme标注完图片后,会生成json文件

以小猫为例:点击保存会在自己的图片目录下生成json文件

Win10系统下安装labelme及json文件批量转化方法

点点

生成的json文件并不能直接用,我们需要对他进行批处理才能成为maskrcnn需要的数据集,批量转化如下:

abelme标注工具再转化.json文件有一个缺陷,一次只能转换一个.json文件,然而深度学习的项目通常需要大量的数据,那么转换.json文件就是一个比较耗时的工作;因此,对labelme做出了改进,可以实现批量转换.json文件。

在安装Anaconda中找到json_to_dataset.py文件如果未找到可以在计算机中搜索,将该文件代码修改为以下代码:

import argparse
import base64
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
def main():
  warnings.warn("This script is aimed to demonstrate how to convert the\n"
         "JSON file to a single image dataset, and not to handle\n"
         "multiple JSON files to generate a real-use dataset.")
  parser = argparse.ArgumentParser()
  parser.add_argument('json_file')
  parser.add_argument('-o', '--out', default=None)
  args = parser.parse_args()
  json_file = args.json_file
  alist = os.listdir(json_file)
  for i in range(0,len(alist)):
    path = os.path.join(json_file,alist[i])
    data = json.load(open(path))
    out_dir = osp.basename(path).replace('.', '_')
    out_dir = osp.join(osp.dirname(path), out_dir)
    if not osp.exists(out_dir):
      os.mkdir(out_dir)
    if data['imageData']:
      imageData = data['imageData']
    else:
      imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
      with open(imagePath, 'rb') as f:
        imageData = f.read()
        imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)
    label_name_to_value = {'_background_': 0}
    for shape in data['shapes']:
      label_name = shape['label']
      if label_name in label_name_to_value:
        label_value = label_name_to_value[label_name]
      else:
        label_value = len(label_name_to_value)
        label_name_to_value[label_name] = label_value
    # label_values must be dense
    label_values, label_names = [], []
    for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
      label_values.append(lv)
      label_names.append(ln)
    assert label_values == list(range(len(label_values)))
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
    captions = ['{}: {}'.format(lv, ln)
          for ln, lv in label_name_to_value.items()]
    lbl_viz = utils.draw_label(lbl, img, captions)
    PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
    utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
      for lbl_name in label_names:
        f.write(lbl_name + '\n')
    warnings.warn('info.yaml is being replaced by label_names.txt')
    info = dict(label_names=label_names)
    with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
      yaml.safe_dump(info, f, default_flow_style=False)
    print('Saved to: %s' % out_dir)
if __name__ == '__main__':
  main()

操作命令如下图:

Win10系统下安装labelme及json文件批量转化方法

生成效果如下:每张图片生成五个文件 ,这就是我们所需要的

Win10系统下安装labelme及json文件批量转化方法

总结

以上所述是小编给大家介绍的Win10系统下安装labelme json文件批量转化方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
python使用xmlrpc实例讲解
Dec 17 Python
从零学Python之hello world
May 21 Python
python常用web框架简单性能测试结果分享(包含django、flask、bottle、tornado)
Aug 25 Python
Python文件监听工具pyinotify与watchdog实例
Oct 15 Python
python 实现一次性在文件中写入多行的方法
Jan 28 Python
TensorFlow——Checkpoint为模型添加检查点的实例
Jan 21 Python
Django重设Admin密码过程解析
Feb 10 Python
Anaconda+Pycharm环境下的PyTorch配置方法
Mar 13 Python
python matplotlib imshow热图坐标替换/映射实例
Mar 14 Python
Keras 快速解决OOM超内存的问题
Jun 11 Python
Python使用Pygame绘制时钟
Nov 29 Python
只用40行Python代码就能写出pdf转word小工具
May 31 Python
python利用tkinter实现屏保
Jul 30 #Python
django 微信网页授权登陆的实现
Jul 30 #Python
python tkinter库实现气泡屏保和锁屏
Jul 29 #Python
django迁移数据库错误问题解决
Jul 29 #Python
python实现桌面托盘气泡提示
Jul 29 #Python
python实现桌面气泡提示功能
Jul 29 #Python
pycharm设置鼠标悬停查看方法设置
Jul 29 #Python
You might like
让你的PHP同时支持GIF、png、JPEG
2006/10/09 PHP
屏蔽机器人从你的网站搜取email地址的php代码
2012/11/14 PHP
分享php分页的功能模块
2015/06/16 PHP
使用正则去除php代码中的注释方法
2016/11/03 PHP
php-fpm添加service服务的例子
2018/04/27 PHP
Javascript 跨域访问解决方案
2009/02/14 Javascript
解决Extjs 4 Panel作为Window组件的子组件时出现双重边框问题
2013/01/11 Javascript
js动态为代码着色显示行号
2013/05/29 Javascript
Jquery实现仿腾讯微博发表广播
2014/11/17 Javascript
JS实现可拖曳、可关闭的弹窗效果
2015/09/26 Javascript
浅谈JavaScript函数的四种存在形态
2016/06/08 Javascript
AngularJS实现单独作用域内的数据操作
2016/09/05 Javascript
Boostrap栅格系统与自己额外定义的媒体查询的冲突问题
2017/02/19 Javascript
vue实现在表格里,取每行的id的方法
2018/03/09 Javascript
Vue前端开发规范整理(推荐)
2018/04/23 Javascript
vue源码学习之Object.defineProperty 对数组监听
2018/05/30 Javascript
微信小程序之批量上传并压缩图片的实例代码
2018/07/05 Javascript
vue+express 构建后台管理系统的示例代码
2018/07/19 Javascript
Vue 中 filter 与 computed 的区别与用法解析
2019/11/21 Javascript
js+canvas实现刮刮奖功能
2020/09/13 Javascript
[00:35]TI7不朽珍藏III——寒冰飞龙不朽展示
2017/07/15 DOTA
Python内置的字符串处理函数详细整理(覆盖日常所用)
2014/08/19 Python
Python中logging模块的用法实例
2014/09/29 Python
剖析Python的Twisted框架的核心特性
2016/05/25 Python
Python简单实现词云图代码及步骤解析
2020/06/04 Python
纯CSS3实现手风琴风格菜单具体步骤
2013/05/06 HTML / CSS
swtich是否能作用在byte上,是否能作用在long上,是否能作用在String上?
2013/03/30 面试题
事业单位个人应聘自荐信
2013/09/21 职场文书
车间机修工岗位职责
2014/02/28 职场文书
厨师个人自我鉴定范文
2014/04/19 职场文书
2014年幼儿园后勤工作总结
2014/11/10 职场文书
增值税发票丢失证明
2015/06/19 职场文书
pytorch 实现多个Dataloader同时训练
2021/05/29 Python
spring项目中切面及AOP的使用方法
2021/06/26 Java/Android
Python读取和写入Excel数据
2022/04/20 Python
Spring Boot接口定义和全局异常统一处理
2022/04/20 Java/Android