Python构建图像分类识别器的方法


Posted in Python onJanuary 12, 2019

机器学习用在图像识别是非常有趣的话题。

我们可以利用OpenCV强大的功能结合机器学习算法实现图像识别系统。

首先,输入若干图像,加入分类标记。利用向量量化方法将特征点进行聚类,并得出中心点,这些中心点就是视觉码本的元素。

其次,利用图像分类器将图像分到已知的类别中,ERF(极端随机森林)算法非常流行,因为ERF具有较快的速度和比较精确的准确度。我们利用决策树进行正确决策。

最后,利用训练好的ERF模型后,创建目标识别器,可以识别未知图像的内容。

当然,这只是雏形,存在很多问题:

界面不友好。

准确率如何保证,如何调整超参数,只有认真研究算法机理,才能真正清除内部实现机制后给予改进。

下面,上代码:

import os

import sys
import argparse
import json
import cv2
import numpy as np
from sklearn.cluster import KMeans
# from star_detector import StarFeatureDetector
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import preprocessing

try:
 import cPickle as pickle #python 2
except ImportError as e:
 import pickle #python 3

def load_training_data(input_folder):
 training_data = []
 if not os.path.isdir(input_folder):
  raise IOError("The folder " + input_folder + " doesn't exist")
  
 for root, dirs, files in os.walk(input_folder):
  for filename in (x for x in files if x.endswith('.jpg')):
   filepath = os.path.join(root, filename)
   print(filepath)
   object_class = filepath.split('\\')[-2]
   print("object_class",object_class)
   training_data.append({'object_class': object_class, 'image_path': filepath})
     
 return training_data
class StarFeatureDetector(object):
 def __init__(self):
  self.detector = cv2.xfeatures2d.StarDetector_create()
 def detect(self, img):
  return self.detector.detect(img)

class FeatureBuilder(object):
 def extract_features(self, img):
  keypoints = StarFeatureDetector().detect(img)
  keypoints, feature_vectors = compute_sift_features(img, keypoints)
  return feature_vectors
 def get_codewords(self, input_map, scaling_size, max_samples=12):
  keypoints_all = []
  count = 0
  cur_class = ''
  for item in input_map:
   if count >= max_samples:
    if cur_class != item['object_class']:
     count = 0
    else:
     continue
   count += 1
   if count == max_samples:
    print ("Built centroids for", item['object_class'])

   cur_class = item['object_class']
   img = cv2.imread(item['image_path'])
   img = resize_image(img, scaling_size)
   num_dims = 128
   feature_vectors = self.extract_features(img)
   keypoints_all.extend(feature_vectors)

  kmeans, centroids = BagOfWords().cluster(keypoints_all)
  return kmeans, centroids
class BagOfWords(object):
 def __init__(self, num_clusters=32):
  self.num_dims = 128
  self.num_clusters = num_clusters
  self.num_retries = 10

 def cluster(self, datapoints):
  kmeans = KMeans(self.num_clusters, 
      n_init=max(self.num_retries, 1),
      max_iter=10, tol=1.0)
  res = kmeans.fit(datapoints)
  centroids = res.cluster_centers_
  return kmeans, centroids

 def normalize(self, input_data):
  sum_input = np.sum(input_data)

  if sum_input > 0:
   return input_data / sum_input
  else:
   return input_data
 def construct_feature(self, img, kmeans, centroids):
  keypoints = StarFeatureDetector().detect(img)
  keypoints, feature_vectors = compute_sift_features(img, keypoints)
  labels = kmeans.predict(feature_vectors)
  feature_vector = np.zeros(self.num_clusters)

  for i, item in enumerate(feature_vectors):
   feature_vector[labels[i]] += 1

  feature_vector_img = np.reshape(feature_vector, ((1, feature_vector.shape[0])))
  return self.normalize(feature_vector_img)
# Extract features from the input images and 
# map them to the corresponding object classes
def get_feature_map(input_map, kmeans, centroids, scaling_size):
 feature_map = []
 for item in input_map:
  temp_dict = {}
  temp_dict['object_class'] = item['object_class']
 
  print("Extracting features for", item['image_path'])
  img = cv2.imread(item['image_path'])
  img = resize_image(img, scaling_size)

  temp_dict['feature_vector'] = BagOfWords().construct_feature(img, kmeans, centroids)
  if temp_dict['feature_vector'] is not None:
   feature_map.append(temp_dict)
 return feature_map

# Extract SIFT features
def compute_sift_features(img, keypoints):
 if img is None:
  raise TypeError('Invalid input image')

 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 keypoints, descriptors = cv2.xfeatures2d.SIFT_create().compute(img_gray, keypoints)
 return keypoints, descriptors

# Resize the shorter dimension to 'new_size' 
# while maintaining the aspect ratio
def resize_image(input_img, new_size):
 h, w = input_img.shape[:2]
 scaling_factor = new_size / float(h)

 if w < h:
  scaling_factor = new_size / float(w)

 new_shape = (int(w * scaling_factor), int(h * scaling_factor))
 return cv2.resize(input_img, new_shape)

def build_features_main():
 data_folder = 'training_images\\'
 scaling_size = 200
 codebook_file='codebook.pkl'
 feature_map_file='feature_map.pkl'
 # Load the training data
 training_data = load_training_data(data_folder)

 # Build the visual codebook
 print("====== Building visual codebook ======")
 kmeans, centroids = FeatureBuilder().get_codewords(training_data, scaling_size)
 if codebook_file:
  with open(codebook_file, 'wb') as f:
   pickle.dump((kmeans, centroids), f)
 
 # Extract features from input images
 print("\n====== Building the feature map ======")
 feature_map = get_feature_map(training_data, kmeans, centroids, scaling_size)
 if feature_map_file:
  with open(feature_map_file, 'wb') as f:
   pickle.dump(feature_map, f)
# --feature-map-file feature_map.pkl --model- file erf.pkl
#----------------------------------------------------------------------------------------------------------
class ERFTrainer(object):
 def __init__(self, X, label_words):
  self.le = preprocessing.LabelEncoder()
  self.clf = ExtraTreesClassifier(n_estimators=100,
    max_depth=16, random_state=0)

  y = self.encode_labels(label_words)
  self.clf.fit(np.asarray(X), y)

 def encode_labels(self, label_words):
  self.le.fit(label_words)
  return np.array(self.le.transform(label_words), dtype=np.float32)

 def classify(self, X):
  label_nums = self.clf.predict(np.asarray(X))
  label_words = self.le.inverse_transform([int(x) for x in label_nums])
  return label_words
#------------------------------------------------------------------------------------------

class ImageTagExtractor(object):
 def __init__(self, model_file, codebook_file):
  with open(model_file, 'rb') as f:
   self.erf = pickle.load(f)

  with open(codebook_file, 'rb') as f:
   self.kmeans, self.centroids = pickle.load(f)

 def predict(self, img, scaling_size):
  img = resize_image(img, scaling_size)
  feature_vector = BagOfWords().construct_feature(
    img, self.kmeans, self.centroids)
  image_tag = self.erf.classify(feature_vector)[0]
  return image_tag

def train_Recognizer_main():
 feature_map_file = 'feature_map.pkl'
 model_file = 'erf.pkl'
 # Load the feature map
 with open(feature_map_file, 'rb') as f:
  feature_map = pickle.load(f)
 # Extract feature vectors and the labels
 label_words = [x['object_class'] for x in feature_map]
 dim_size = feature_map[0]['feature_vector'].shape[1]
 X = [np.reshape(x['feature_vector'], (dim_size,)) for x in feature_map]

 # Train the Extremely Random Forests classifier
 erf = ERFTrainer(X, label_words)
 if model_file:
  with open(model_file, 'wb') as f:
   pickle.dump(erf, f)
 #--------------------------------------------------------------------
 # args = build_arg_parser().parse_args()
 model_file = 'erf.pkl'
 codebook_file ='codebook.pkl'
 import os
 rootdir=r"F:\airplanes"
 list=os.listdir(rootdir)
 for i in range(0,len(list)):
  path=os.path.join(rootdir,list[i])
  if os.path.isfile(path):
   try:
    print(path)
    input_image = cv2.imread(path)
    scaling_size = 200
    print("\nOutput:", ImageTagExtractor(model_file,codebook_file)\
      .predict(input_image, scaling_size))
   except:
    continue
 #-----------------------------------------------------------------------
build_features_main()
train_Recognizer_main()

以上这篇Python构建图像分类识别器的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现挑选出来100以内的质数
Mar 24 Python
详解python上传文件和字符到PHP服务器
Nov 24 Python
对python3新增的byte类型详解
Dec 04 Python
用Python将结果保存为xlsx的方法
Jan 28 Python
Python (Win)readline和tab补全的安装方法
Aug 27 Python
使用python的turtle绘画滑稽脸实例
Nov 21 Python
python如何实现不可变字典inmutabledict
Jan 08 Python
tensorflow ckpt模型和pb模型获取节点名称,及ckpt转pb模型实例
Jan 21 Python
tensorflow 实现自定义layer并添加到计算图中
Feb 04 Python
使用python从三个角度解决josephus问题的方法
Mar 27 Python
Python如何获取文件指定行的内容
May 27 Python
python如何正确使用yield
May 21 Python
使用python opencv对目录下图片进行去重的方法
Jan 12 #Python
python变量赋值方法(可变与不可变)
Jan 12 #Python
python交换两个变量的值方法
Jan 12 #Python
对Pyhon实现静态变量全局变量的方法详解
Jan 11 #Python
浅谈Python中的全局锁(GIL)问题
Jan 11 #Python
Python 实现子类获取父类的类成员方法
Jan 11 #Python
python使用xlrd模块读取xlsx文件中的ip方法
Jan 11 #Python
You might like
PHP版自动生成文章摘要
2008/07/23 PHP
php缓冲 output_buffering的使用详解
2013/06/13 PHP
javascript cookie解码函数(兼容ff)
2008/03/17 Javascript
用Jquery重写windows.alert方法实现思路
2013/04/03 Javascript
VS2008中使用JavaScript调用WebServices
2014/12/18 Javascript
JavaScript错误处理
2015/02/03 Javascript
了解Javascript的模块化开发
2015/03/02 Javascript
jQuery实现ctrl+enter(回车)提交表单
2015/10/19 Javascript
JS实现的竖向折叠菜单代码
2015/10/21 Javascript
jquery.qtip提示信息插件用法简单实例
2016/06/17 Javascript
JavaScript鼠标事件,点击鼠标右键,弹出div的简单实例
2016/08/03 Javascript
jQuery+ThinkPHP+Ajax实现即时消息提醒功能实例代码
2017/03/21 jQuery
深入理解vue.js中的v-if和v-show
2017/06/22 Javascript
深入浅出es6模板字符串
2017/08/26 Javascript
js实现搜索栏效果
2018/11/16 Javascript
JavaScript解析JSON数据示例
2019/07/16 Javascript
vue中使用elementUI组件手动上传图片功能
2019/12/13 Javascript
jQuery 添加元素和删除元素的方法
2020/07/15 jQuery
Vue $emit()不能触发父组件方法的原因及解决
2020/07/28 Javascript
vue print.js打印支持Echarts图表操作
2020/11/13 Javascript
[02:44]完美大师赛主赛事淘汰赛第二日观众采访
2017/11/24 DOTA
[36:09]Secret vs VG 2019国际邀请赛淘汰赛 败者组 BO3 第一场 8.24
2019/09/10 DOTA
[01:16:16]DOTA2-DPC中国联赛定级赛 RNG vs Phoenix BO3第二场 1月8日
2021/03/11 DOTA
python爬虫自动创建文件夹的功能
2018/08/01 Python
pytorch实现CNN卷积神经网络
2020/02/19 Python
如何向scrapy中的spider传递参数的几种方法
2020/11/18 Python
css3动画 小球滚动 js控制动画暂停
2019/11/29 HTML / CSS
Zavvi西班牙:电子游戏、极客服装、Blu-ray、Funko Pop等
2019/05/03 全球购物
如何处理简单的PHP错误
2015/10/14 面试题
小学教师自我鉴定范文
2014/03/20 职场文书
旅游局领导班子“四风”问题对照检查材料思想汇报
2014/09/29 职场文书
质检员岗位职责范本
2015/04/07 职场文书
企业投资意向书
2015/05/09 职场文书
财务年终工作总结大全
2019/06/20 职场文书
2019通用版导游词范本!
2019/08/07 职场文书
Python中X[:,0]和X[:,1]的用法
2021/05/10 Python