Python构建图像分类识别器的方法


Posted in Python onJanuary 12, 2019

机器学习用在图像识别是非常有趣的话题。

我们可以利用OpenCV强大的功能结合机器学习算法实现图像识别系统。

首先,输入若干图像,加入分类标记。利用向量量化方法将特征点进行聚类,并得出中心点,这些中心点就是视觉码本的元素。

其次,利用图像分类器将图像分到已知的类别中,ERF(极端随机森林)算法非常流行,因为ERF具有较快的速度和比较精确的准确度。我们利用决策树进行正确决策。

最后,利用训练好的ERF模型后,创建目标识别器,可以识别未知图像的内容。

当然,这只是雏形,存在很多问题:

界面不友好。

准确率如何保证,如何调整超参数,只有认真研究算法机理,才能真正清除内部实现机制后给予改进。

下面,上代码:

import os

import sys
import argparse
import json
import cv2
import numpy as np
from sklearn.cluster import KMeans
# from star_detector import StarFeatureDetector
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import preprocessing

try:
 import cPickle as pickle #python 2
except ImportError as e:
 import pickle #python 3

def load_training_data(input_folder):
 training_data = []
 if not os.path.isdir(input_folder):
  raise IOError("The folder " + input_folder + " doesn't exist")
  
 for root, dirs, files in os.walk(input_folder):
  for filename in (x for x in files if x.endswith('.jpg')):
   filepath = os.path.join(root, filename)
   print(filepath)
   object_class = filepath.split('\\')[-2]
   print("object_class",object_class)
   training_data.append({'object_class': object_class, 'image_path': filepath})
     
 return training_data
class StarFeatureDetector(object):
 def __init__(self):
  self.detector = cv2.xfeatures2d.StarDetector_create()
 def detect(self, img):
  return self.detector.detect(img)

class FeatureBuilder(object):
 def extract_features(self, img):
  keypoints = StarFeatureDetector().detect(img)
  keypoints, feature_vectors = compute_sift_features(img, keypoints)
  return feature_vectors
 def get_codewords(self, input_map, scaling_size, max_samples=12):
  keypoints_all = []
  count = 0
  cur_class = ''
  for item in input_map:
   if count >= max_samples:
    if cur_class != item['object_class']:
     count = 0
    else:
     continue
   count += 1
   if count == max_samples:
    print ("Built centroids for", item['object_class'])

   cur_class = item['object_class']
   img = cv2.imread(item['image_path'])
   img = resize_image(img, scaling_size)
   num_dims = 128
   feature_vectors = self.extract_features(img)
   keypoints_all.extend(feature_vectors)

  kmeans, centroids = BagOfWords().cluster(keypoints_all)
  return kmeans, centroids
class BagOfWords(object):
 def __init__(self, num_clusters=32):
  self.num_dims = 128
  self.num_clusters = num_clusters
  self.num_retries = 10

 def cluster(self, datapoints):
  kmeans = KMeans(self.num_clusters, 
      n_init=max(self.num_retries, 1),
      max_iter=10, tol=1.0)
  res = kmeans.fit(datapoints)
  centroids = res.cluster_centers_
  return kmeans, centroids

 def normalize(self, input_data):
  sum_input = np.sum(input_data)

  if sum_input > 0:
   return input_data / sum_input
  else:
   return input_data
 def construct_feature(self, img, kmeans, centroids):
  keypoints = StarFeatureDetector().detect(img)
  keypoints, feature_vectors = compute_sift_features(img, keypoints)
  labels = kmeans.predict(feature_vectors)
  feature_vector = np.zeros(self.num_clusters)

  for i, item in enumerate(feature_vectors):
   feature_vector[labels[i]] += 1

  feature_vector_img = np.reshape(feature_vector, ((1, feature_vector.shape[0])))
  return self.normalize(feature_vector_img)
# Extract features from the input images and 
# map them to the corresponding object classes
def get_feature_map(input_map, kmeans, centroids, scaling_size):
 feature_map = []
 for item in input_map:
  temp_dict = {}
  temp_dict['object_class'] = item['object_class']
 
  print("Extracting features for", item['image_path'])
  img = cv2.imread(item['image_path'])
  img = resize_image(img, scaling_size)

  temp_dict['feature_vector'] = BagOfWords().construct_feature(img, kmeans, centroids)
  if temp_dict['feature_vector'] is not None:
   feature_map.append(temp_dict)
 return feature_map

# Extract SIFT features
def compute_sift_features(img, keypoints):
 if img is None:
  raise TypeError('Invalid input image')

 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 keypoints, descriptors = cv2.xfeatures2d.SIFT_create().compute(img_gray, keypoints)
 return keypoints, descriptors

# Resize the shorter dimension to 'new_size' 
# while maintaining the aspect ratio
def resize_image(input_img, new_size):
 h, w = input_img.shape[:2]
 scaling_factor = new_size / float(h)

 if w < h:
  scaling_factor = new_size / float(w)

 new_shape = (int(w * scaling_factor), int(h * scaling_factor))
 return cv2.resize(input_img, new_shape)

def build_features_main():
 data_folder = 'training_images\\'
 scaling_size = 200
 codebook_file='codebook.pkl'
 feature_map_file='feature_map.pkl'
 # Load the training data
 training_data = load_training_data(data_folder)

 # Build the visual codebook
 print("====== Building visual codebook ======")
 kmeans, centroids = FeatureBuilder().get_codewords(training_data, scaling_size)
 if codebook_file:
  with open(codebook_file, 'wb') as f:
   pickle.dump((kmeans, centroids), f)
 
 # Extract features from input images
 print("\n====== Building the feature map ======")
 feature_map = get_feature_map(training_data, kmeans, centroids, scaling_size)
 if feature_map_file:
  with open(feature_map_file, 'wb') as f:
   pickle.dump(feature_map, f)
# --feature-map-file feature_map.pkl --model- file erf.pkl
#----------------------------------------------------------------------------------------------------------
class ERFTrainer(object):
 def __init__(self, X, label_words):
  self.le = preprocessing.LabelEncoder()
  self.clf = ExtraTreesClassifier(n_estimators=100,
    max_depth=16, random_state=0)

  y = self.encode_labels(label_words)
  self.clf.fit(np.asarray(X), y)

 def encode_labels(self, label_words):
  self.le.fit(label_words)
  return np.array(self.le.transform(label_words), dtype=np.float32)

 def classify(self, X):
  label_nums = self.clf.predict(np.asarray(X))
  label_words = self.le.inverse_transform([int(x) for x in label_nums])
  return label_words
#------------------------------------------------------------------------------------------

class ImageTagExtractor(object):
 def __init__(self, model_file, codebook_file):
  with open(model_file, 'rb') as f:
   self.erf = pickle.load(f)

  with open(codebook_file, 'rb') as f:
   self.kmeans, self.centroids = pickle.load(f)

 def predict(self, img, scaling_size):
  img = resize_image(img, scaling_size)
  feature_vector = BagOfWords().construct_feature(
    img, self.kmeans, self.centroids)
  image_tag = self.erf.classify(feature_vector)[0]
  return image_tag

def train_Recognizer_main():
 feature_map_file = 'feature_map.pkl'
 model_file = 'erf.pkl'
 # Load the feature map
 with open(feature_map_file, 'rb') as f:
  feature_map = pickle.load(f)
 # Extract feature vectors and the labels
 label_words = [x['object_class'] for x in feature_map]
 dim_size = feature_map[0]['feature_vector'].shape[1]
 X = [np.reshape(x['feature_vector'], (dim_size,)) for x in feature_map]

 # Train the Extremely Random Forests classifier
 erf = ERFTrainer(X, label_words)
 if model_file:
  with open(model_file, 'wb') as f:
   pickle.dump(erf, f)
 #--------------------------------------------------------------------
 # args = build_arg_parser().parse_args()
 model_file = 'erf.pkl'
 codebook_file ='codebook.pkl'
 import os
 rootdir=r"F:\airplanes"
 list=os.listdir(rootdir)
 for i in range(0,len(list)):
  path=os.path.join(rootdir,list[i])
  if os.path.isfile(path):
   try:
    print(path)
    input_image = cv2.imread(path)
    scaling_size = 200
    print("\nOutput:", ImageTagExtractor(model_file,codebook_file)\
      .predict(input_image, scaling_size))
   except:
    continue
 #-----------------------------------------------------------------------
build_features_main()
train_Recognizer_main()

以上这篇Python构建图像分类识别器的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python入门篇之函数
Oct 20 Python
python开启多个子进程并行运行的方法
Apr 18 Python
python3.6+django2.0开发一套学员管理系统
Mar 03 Python
Python简单生成随机数的方法示例
Mar 31 Python
使用python读取txt文件的内容,并删除重复的行数方法
Apr 18 Python
Python 实现某个功能每隔一段时间被执行一次的功能方法
Oct 14 Python
Python实现DDos攻击实例详解
Feb 02 Python
详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)
Aug 06 Python
python 计算积分图和haar特征的实例代码
Nov 20 Python
python-numpy-指数分布实例详解
Dec 07 Python
python一些性能分析的技巧
Aug 30 Python
python 递归相关知识总结
Mar 03 Python
使用python opencv对目录下图片进行去重的方法
Jan 12 #Python
python变量赋值方法(可变与不可变)
Jan 12 #Python
python交换两个变量的值方法
Jan 12 #Python
对Pyhon实现静态变量全局变量的方法详解
Jan 11 #Python
浅谈Python中的全局锁(GIL)问题
Jan 11 #Python
Python 实现子类获取父类的类成员方法
Jan 11 #Python
python使用xlrd模块读取xlsx文件中的ip方法
Jan 11 #Python
You might like
浅析PHP原理之变量(Variables inside PHP)
2013/08/09 PHP
PHP扩展安装方法步骤解析
2020/11/24 PHP
greybox——不开新窗口看新的网页
2007/02/20 Javascript
extjs实现选择多表自定义查询功能 前台部分(ext源码)
2011/12/20 Javascript
Jquery easyui 下loaing效果示例代码
2013/08/12 Javascript
js判断上传文件的类型和大小示例代码
2013/10/18 Javascript
鼠标移到图片上变大显示而不是放大镜效果
2014/06/15 Javascript
Bootstrap弹出带合法性检查的登录框实例代码【推荐】
2016/06/23 Javascript
快速移动鼠标触发问题及解决方法(ECharts外部调用保存为图片操作及工作流接线mouseenter和mouseleave)
2016/08/29 Javascript
基于JavaScript实现随机颜色输入框
2016/12/10 Javascript
vue展示dicom文件医疗系统的实现代码
2018/08/27 Javascript
一次Webpack配置文件的分离实战记录
2018/11/30 Javascript
html-webpack-plugin修改页面的title的方法
2020/06/18 Javascript
JavaScript 闭包的使用场景
2020/09/17 Javascript
ES5和ES6中类的区别总结
2020/12/21 Javascript
简单介绍Python中的几种数据类型
2016/01/02 Python
Python备份目录及目录下的全部内容的实现方法
2016/06/12 Python
python aiohttp的使用详解
2019/06/20 Python
python爬虫 模拟登录人人网过程解析
2019/07/31 Python
Django框架序列化与反序列化操作详解
2019/11/01 Python
10个python3常用排序算法详细说明与实例(快速排序,冒泡排序,桶排序,基数排序,堆排序,希尔排序,归并排序,计数排序)
2020/03/17 Python
jupyter notebook oepncv 显示一张图像的实现
2020/04/24 Python
Python如何急速下载第三方库详解
2020/11/02 Python
利用CSS3实现单选框动画特效示例代码
2016/09/26 HTML / CSS
NEW LOOK官网:英国时装零售巨头之一,快时尚品牌
2017/01/11 全球购物
德国黑胶唱片、街头服装及运动鞋网上商店:HHV
2018/08/24 全球购物
请编写一个 C 函数,该函数在给定的内存区域搜索给定的字符,并返回该字符所在位置索引值
2014/09/15 面试题
管理科学大学生求职信
2013/11/13 职场文书
毕业求职自荐信格式是什么
2013/11/19 职场文书
庆七一活动方案
2014/01/25 职场文书
领导调研接待方案
2014/02/27 职场文书
《厄运打不垮的信念》教学反思
2014/04/13 职场文书
关工委先进个人事迹材料
2014/05/23 职场文书
北京故宫的导游词
2015/01/31 职场文书
2015年安全生产月活动总结
2015/03/26 职场文书
bat批处理之字符串操作的实现
2022/03/16 Python