Python SVM(支持向量机)实现方法完整示例


Posted in Python onJune 19, 2018

本文实例讲述了Python SVM(支持向量机)实现方法。分享给大家供大家参考,具体如下:

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
op2=>operation: 格式化数据
cond=>condition: 是否达到迭代次数
op3=>operation: 寻找超平面分割最小间隔
ccond=>conditon: 数据是否改变
op4=>operation: 输出结果
st->op1->op2->cond
cond(yes)->op4->e
cond(no)->op3

啊,这markdown flow好难用,我决定就画到这吧=。=

输入样例

/* testSet.txt */
3.542485 1.977398 -1
3.018896 2.556416 -1
7.551510 -1.580030 1
2.114999 -0.004466 -1
8.127113 1.274372 1
7.108772 -0.986906 1
8.610639 2.046708 1
2.326297 0.265213 -1
3.634009 1.730537 -1
0.341367 -0.894998 -1
3.125951 0.293251 -1
2.123252 -0.783563 -1
0.887835 -2.797792 -1
7.139979 -2.329896 1
1.696414 -1.212496 -1
8.117032 0.623493 1
8.497162 -0.266649 1
4.658191 3.507396 -1
8.197181 1.545132 1
1.208047 0.213100 -1
1.928486 -0.321870 -1
2.175808 -0.014527 -1
7.886608 0.461755 1
3.223038 -0.552392 -1
3.628502 2.190585 -1
7.407860 -0.121961 1
7.286357 0.251077 1
2.301095 -0.533988 -1
-0.232542 -0.547690 -1
3.457096 -0.082216 -1
3.023938 -0.057392 -1
8.015003 0.885325 1
8.991748 0.923154 1
7.916831 -1.781735 1
7.616862 -0.217958 1
2.450939 0.744967 -1
7.270337 -2.507834 1
1.749721 -0.961902 -1
1.803111 -0.176349 -1
8.804461 3.044301 1
1.231257 -0.568573 -1
2.074915 1.410550 -1
-0.743036 -1.736103 -1
3.536555 3.964960 -1
8.410143 0.025606 1
7.382988 -0.478764 1
6.960661 -0.245353 1
8.234460 0.701868 1
8.168618 -0.903835 1
1.534187 -0.622492 -1
9.229518 2.066088 1
7.886242 0.191813 1
2.893743 -1.643468 -1
1.870457 -1.040420 -1
5.286862 -2.358286 1
6.080573 0.418886 1
2.544314 1.714165 -1
6.016004 -3.753712 1
0.926310 -0.564359 -1
0.870296 -0.109952 -1
2.369345 1.375695 -1
1.363782 -0.254082 -1
7.279460 -0.189572 1
1.896005 0.515080 -1
8.102154 -0.603875 1
2.529893 0.662657 -1
1.963874 -0.365233 -1
8.132048 0.785914 1
8.245938 0.372366 1
6.543888 0.433164 1
-0.236713 -5.766721 -1
8.112593 0.295839 1
9.803425 1.495167 1
1.497407 -0.552916 -1
1.336267 -1.632889 -1
9.205805 -0.586480 1
1.966279 -1.840439 -1
8.398012 1.584918 1
7.239953 -1.764292 1
7.556201 0.241185 1
9.015509 0.345019 1
8.266085 -0.230977 1
8.545620 2.788799 1
9.295969 1.346332 1
2.404234 0.570278 -1
2.037772 0.021919 -1
1.727631 -0.453143 -1
1.979395 -0.050773 -1
8.092288 -1.372433 1
1.667645 0.239204 -1
9.854303 1.365116 1
7.921057 -1.327587 1
8.500757 1.492372 1
1.339746 -0.291183 -1
3.107511 0.758367 -1
2.609525 0.902979 -1
3.263585 1.367898 -1
2.912122 -0.202359 -1
1.731786 0.589096 -1
2.387003 1.573131 -1

代码实现

# -*- coding:utf-8 -*-
#!python3
__author__ = 'Wsine'
from numpy import *
import matplotlib.pyplot as plt
import operator
import time
def loadDataSet(fileName):
  dataMat = []
  labelMat = []
  with open(fileName) as fr:
    for line in fr.readlines():
      lineArr = line.strip().split('\t')
      dataMat.append([float(lineArr[0]), float(lineArr[1])])
      labelMat.append(float(lineArr[2]))
  return dataMat, labelMat
def selectJrand(i, m):
  j = i
  while (j == i):
    j = int(random.uniform(0, m))
  return j
def clipAlpha(aj, H, L):
  if aj > H:
    aj = H
  if L > aj:
    aj = L
  return aj
class optStruct:
  def __init__(self, dataMatIn, classLabels, C, toler):
    self.X = dataMatIn
    self.labelMat = classLabels
    self.C = C
    self.tol = toler
    self.m = shape(dataMatIn)[0]
    self.alphas = mat(zeros((self.m, 1)))
    self.b = 0
    self.eCache = mat(zeros((self.m, 2)))
def calcEk(oS, k):
  fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
  Ek = fXk - float(oS.labelMat[k])
  return Ek
def selectJ(i, oS, Ei):
  maxK = -1
  maxDeltaE = 0
  Ej = 0
  oS.eCache[i] = [1, Ei]
  validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
  if (len(validEcacheList)) > 1:
    for k in validEcacheList:
      if k == i:
        continue
      Ek = calcEk(oS, k)
      deltaE = abs(Ei - Ek)
      if (deltaE > maxDeltaE):
        maxK = k
        maxDeltaE = deltaE
        Ej = Ek
    return maxK, Ej
  else:
    j = selectJrand(i, oS.m)
    Ej = calcEk(oS, j)
  return j, Ej
def updateEk(oS, k):
  Ek = calcEk(oS, k)
  oS.eCache[k] = [1, Ek]
def innerL(i, oS):
  Ei = calcEk(oS, i)
  if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
    j, Ej = selectJ(i, oS, Ei)
    alphaIold = oS.alphas[i].copy()
    alphaJold = oS.alphas[j].copy()
    if (oS.labelMat[i] != oS.labelMat[j]):
      L = max(0, oS.alphas[j] - oS.alphas[i])
      H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
    else:
      L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
      H = min(oS.C, oS.alphas[j] + oS.alphas[i])
    if (L == H):
      # print("L == H")
      return 0
    eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
    if eta >= 0:
      # print("eta >= 0")
      return 0
    oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
    oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
    updateEk(oS, j)
    if (abs(oS.alphas[j] - alphaJold) < 0.00001):
      # print("j not moving enough")
      return 0
    oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
    updateEk(oS, i)
    b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
    b2 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
    if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
      oS.b = b1
    elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
      oS.b = b2
    else:
      oS.b = (b1 + b2) / 2.0
    return 1
  else:
    return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
  """
  输入:数据集, 类别标签, 常数C, 容错率, 最大循环次数
  输出:目标b, 参数alphas
  """
  oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
  iterr = 0
  entireSet = True
  alphaPairsChanged = 0
  while (iterr < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
    alphaPairsChanged = 0
    if entireSet:
      for i in range(oS.m):
        alphaPairsChanged += innerL(i, oS)
      # print("fullSet, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
      iterr += 1
    else:
      nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
      for i in nonBoundIs:
        alphaPairsChanged += innerL(i, oS)
        # print("non-bound, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
      iterr += 1
    if entireSet:
      entireSet = False
    elif (alphaPairsChanged == 0):
      entireSet = True
    # print("iteration number: %d" % iterr)
  return oS.b, oS.alphas
def calcWs(alphas, dataArr, classLabels):
  """
  输入:alphas, 数据集, 类别标签
  输出:目标w
  """
  X = mat(dataArr)
  labelMat = mat(classLabels).transpose()
  m, n = shape(X)
  w = zeros((n, 1))
  for i in range(m):
    w += multiply(alphas[i] * labelMat[i], X[i, :].T)
  return w
def plotFeature(dataMat, labelMat, weights, b):
  dataArr = array(dataMat)
  n = shape(dataArr)[0]
  xcord1 = []; ycord1 = []
  xcord2 = []; ycord2 = []
  for i in range(n):
    if int(labelMat[i]) == 1:
      xcord1.append(dataArr[i, 0])
      ycord1.append(dataArr[i, 1])
    else:
      xcord2.append(dataArr[i, 0])
      ycord2.append(dataArr[i, 1])
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
  ax.scatter(xcord2, ycord2, s=30, c='green')
  x = arange(2, 7.0, 0.1)
  y = (-b[0, 0] * x) - 10 / linalg.norm(weights)
  ax.plot(x, y)
  plt.xlabel('X1'); plt.ylabel('X2')
  plt.show()
def main():
  trainDataSet, trainLabel = loadDataSet('testSet.txt')
  b, alphas = smoP(trainDataSet, trainLabel, 0.6, 0.0001, 40)
  ws = calcWs(alphas, trainDataSet, trainLabel)
  print("ws = \n", ws)
  print("b = \n", b)
  plotFeature(trainDataSet, trainLabel, ws, b)
if __name__ == '__main__':
  start = time.clock()
  main()
  end = time.clock()
  print('finish all in %s' % str(end - start))

输出样例

ws =
 [[ 0.65307162]
 [-0.17196128]]
b =
 [[-2.89901748]]
finish all in 2.5683854014099112

Python SVM(支持向量机)实现方法完整示例

绘图方面还存在一些bug。

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python计算书页码的统计数字问题实例
Sep 26 Python
python对指定目录下文件进行批量重命名的方法
Apr 18 Python
python调用Matplotlib绘制分布点并且添加标签
May 31 Python
微信小程序python用户认证的实现
Jul 29 Python
Python单元测试与测试用例简析
Nov 09 Python
浅析python中while循环和for循环
Nov 19 Python
PyTorch 解决Dataset和Dataloader遇到的问题
Jan 08 Python
python isinstance函数用法详解
Feb 13 Python
基于python实现FTP文件上传与下载操作(ftp&amp;sftp协议)
Apr 01 Python
Python如何将模块打包并发布
Aug 30 Python
python实现登录与注册系统
Nov 30 Python
matplotlib之pyplot模块实现添加子图subplot的使用
Apr 25 Python
Tensorflow使用tfrecord输入数据格式
Jun 19 #Python
Tensorflow 训练自己的数据集将数据直接导入到内存
Jun 19 #Python
python如何爬取个性签名
Jun 19 #Python
详解TensorFlow查看ckpt中变量的几种方法
Jun 19 #Python
TensorFlow 滑动平均的示例代码
Jun 19 #Python
python3个性签名设计实现代码
Jun 19 #Python
TensorFlow 模型载入方法汇总(小结)
Jun 19 #Python
You might like
PHP 简单数组排序实现代码
2009/08/05 PHP
在命令行下运行PHP脚本[带参数]的方法
2010/01/22 PHP
PHP 设置MySQL连接字符集的方法
2011/01/02 PHP
PHP简洁函数(PHP简单明了函数语法)
2012/06/10 PHP
ThinkPHP上使用多说评论插件的方法
2014/10/31 PHP
php实现mysql事务处理的方法
2014/12/25 PHP
PHP中的魔术方法总结和使用实例
2015/05/11 PHP
php数据访问之查询关键字
2016/05/09 PHP
PHP实现类似题库抽题效果
2018/08/16 PHP
一款js和css代码压缩工具[附JAVA环境配置方法]
2010/04/16 Javascript
js点击页面其它地方将某个显示的DIV隐藏
2012/07/12 Javascript
基于jQuery的简单九宫格实现代码
2012/08/09 Javascript
用JavaScript计算在UTF-8下存储字符串占用字节数
2013/08/08 Javascript
js点击选择文本的方法
2015/02/09 Javascript
基于jQuery实现Tabs选项卡自定义插件
2016/11/21 Javascript
浅谈关于.vue文件中style的scoped属性
2017/08/19 Javascript
微信小程序实现上传图片裁剪图片过程解析
2019/08/22 Javascript
微信小程序实现点击图片放大预览
2019/10/21 Javascript
原生js实现点击轮播切换图片
2020/02/11 Javascript
Python实现连接postgresql数据库的方法分析
2017/12/27 Python
python多线程http压力测试脚本
2019/06/25 Python
大家都说好用的Python命令行库click的使用
2019/11/07 Python
python的reverse函数翻转结果为None的问题
2020/05/11 Python
django rest framework serializers序列化实例
2020/05/13 Python
彻底解决Python包下载慢问题
2020/11/15 Python
python如何修改文件时间属性
2021/02/05 Python
印度尼西亚值得信赖的第一家网店:Bhinneka
2018/07/16 全球购物
美国隐形眼镜网上商店:Lens.com
2019/09/03 全球购物
英国礼品和生活方式品牌:Treat Republic
2020/11/21 全球购物
.net软件工程师面试题
2015/03/31 面试题
什么是虚拟内存?虚拟内存有什么优势?
2016/02/09 面试题
龙门石窟导游词
2015/02/02 职场文书
演讲比赛通讯稿
2015/07/18 职场文书
浅谈mysql执行过程以及顺序
2021/05/12 MySQL
nginx共享内存的机制详解
2022/03/21 Servers
分享一个vue实现的记事本功能案例
2022/04/11 Vue.js