Python搜索引擎实现原理和方法


Posted in Python onNovember 27, 2017

如何在庞大的数据中高效的检索自己需要的东西?本篇内容介绍了Python做出一个大数据搜索引擎的原理和方法,以及中间进行数据分析的原理也给大家做了详细介绍。

布隆过滤器 (Bloom Filter)
第一步我们先要实现一个布隆过滤器。

布隆过滤器是大数据领域的一个常见算法,它的目的是过滤掉那些不是目标的元素。也就是说如果一个要搜索的词并不存在与我的数据中,那么它可以以很快的速度返回目标不存在。

让我们看看以下布隆过滤器的代码:

class Bloomfilter(object):
  """
  A Bloom filter is a probabilistic data-structure that trades space for accuracy
  when determining if a value is in a set. It can tell you if a value was possibly
  added, or if it was definitely not added, but it can't tell you for certain that
  it was added.
  """
  def __init__(self, size):
    """Setup the BF with the appropriate size"""
    self.values = [False] * size
    self.size = size
 
  def hash_value(self, value):
    """Hash the value provided and scale it to fit the BF size"""
    return hash(value) % self.size
 
  def add_value(self, value):
    """Add a value to the BF"""
    h = self.hash_value(value)
    self.values[h] = True
 
  def might_contain(self, value):
    """Check if the value might be in the BF"""
    h = self.hash_value(value)
    return self.values[h]
 
  def print_contents(self):
    """Dump the contents of the BF for debugging purposes"""
    print self.values

基本的数据结构是个数组(实际上是个位图,用1/0来记录数据是否存在),初始化是没有任何内容,所以全部置False。实际的使用当中,该数组的长度是非常大的,以保证效率。

利用哈希算法来决定数据应该存在哪一位,也就是数组的索引

当一个数据被加入到布隆过滤器的时候,计算它的哈希值然后把相应的位置为True

当检查一个数据是否已经存在或者说被索引过的时候,只要检查对应的哈希值所在的位的True/Fasle

看到这里,大家应该可以看出,如果布隆过滤器返回False,那么数据一定是没有索引过的,然而如果返回True,那也不能说数据一定就已经被索引过。在搜索过程中使用布隆过滤器可以使得很多没有命中的搜索提前返回来提高效率。

我们看看这段 code是如何运行的:

bf = Bloomfilter(10)
bf.add_value('dog')
bf.add_value('fish')
bf.add_value('cat')
bf.print_contents()
bf.add_value('bird')
bf.print_contents()
# Note: contents are unchanged after adding bird - it collides
for term in ['dog', 'fish', 'cat', 'bird', 'duck', 'emu']:
print '{}: {} {}'.format(term, bf.hash_value(term), bf.might_contain(term))

结果:

[False, False, False, False, True, True, False, False, False, True]
[False, False, False, False, True, True, False, False, False, True]
dog: 5 True
fish: 4 True
cat: 9 True
bird: 9 True
duck: 5 True
emu: 8 False

首先创建了一个容量为10的的布隆过滤器

Python搜索引擎实现原理和方法

然后分别加入 ‘dog',‘fish',‘cat'三个对象,这时的布隆过滤器的内容如下:

Python搜索引擎实现原理和方法

然后加入‘bird'对象,布隆过滤器的内容并没有改变,因为‘bird'和‘fish'恰好拥有相同的哈希。

Python搜索引擎实现原理和方法

最后我们检查一堆对象('dog', ‘fish', ‘cat', ‘bird', ‘duck', 'emu')是不是已经被索引了。结果发现‘duck'返回True,2而‘emu'返回False。因为‘duck'的哈希恰好和‘dog'是一样的。

Python搜索引擎实现原理和方法

分词

下面一步我们要实现分词。 分词的目的是要把我们的文本数据分割成可搜索的最小单元,也就是词。这里我们主要针对英语,因为中文的分词涉及到自然语言处理,比较复杂,而英文基本只要用标点符号就好了。厦门叉车

下面我们看看分词的代码:

def major_segments(s):
  """
  Perform major segmenting on a string. Split the string by all of the major
  breaks, and return the set of everything found. The breaks in this implementation
  are single characters, but in Splunk proper they can be multiple characters.
  A set is used because ordering doesn't matter, and duplicates are bad.
  """
  major_breaks = ' '
  last = -1
  results = set()
 
  # enumerate() will give us (0, s[0]), (1, s[1]), ...
  for idx, ch in enumerate(s):
    if ch in major_breaks:
      segment = s[last+1:idx]
      results.add(segment)
 
      last = idx
 
  # The last character may not be a break so always capture
  # the last segment (which may end up being "", but yolo)  
  segment = s[last+1:]
  results.add(segment)
 
  return results

主要分割

主要分割使用空格来分词,实际的分词逻辑中,还会有其它的分隔符。例如Splunk的缺省分割符包括以下这些,用户也可以定义自己的分割符。

] < >( ) { } | ! ; , ‘ ” * \n \r \s \t & ? + %21 %26 %2526 %3B %7C %20 %2B %3D — %2520 %5D %5B %3A %0A %2C %28 %29

def minor_segments(s):
  """
  Perform minor segmenting on a string. This is like major
  segmenting, except it also captures from the start of the
  input to each break.
  """
  minor_breaks = '_.'
  last = -1
  results = set()
 
  for idx, ch in enumerate(s):
    if ch in minor_breaks:
      segment = s[last+1:idx]
      results.add(segment)
 
      segment = s[:idx]
      results.add(segment)
 
      last = idx
 
  segment = s[last+1:]
  results.add(segment)
  results.add(s)
 
  return results

次要分割

次要分割和主要分割的逻辑类似,只是还会把从开始部分到当前分割的结果加入。例如“1.2.3.4”的次要分割会有1,2,3,4,1.2,1.2.3

def segments(event):
  """Simple wrapper around major_segments / minor_segments"""
  results = set()
  for major in major_segments(event):
    for minor in minor_segments(major):
      results.add(minor)
  return results

分词的逻辑就是对文本先进行主要分割,对每一个主要分割在进行次要分割。然后把所有分出来的词返回。

我们看看这段 code是如何运行的:

for term in segments('src_ip = 1.2.3.4'):
print term
src
1.2
1.2.3.4
src_ip
3
1
1.2.3
ip
2
=
4

搜索
好了,有个分词和布隆过滤器这两个利器的支撑后,我们就可以来实现搜索的功能了。

上代码:

class Splunk(object):
  def __init__(self):
    self.bf = Bloomfilter(64)
    self.terms = {} # Dictionary of term to set of events
    self.events = []
  
  def add_event(self, event):
    """Adds an event to this object"""
 
    # Generate a unique ID for the event, and save it
    event_id = len(self.events)
    self.events.append(event)
 
    # Add each term to the bloomfilter, and track the event by each term
    for term in segments(event):
      self.bf.add_value(term)
 
      if term not in self.terms:
        self.terms[term] = set()
      self.terms[term].add(event_id)
 
  def search(self, term):
    """Search for a single term, and yield all the events that contain it"""
    
    # In Splunk this runs in O(1), and is likely to be in filesystem cache (memory)
    if not self.bf.might_contain(term):
      return
 
    # In Splunk this probably runs in O(log N) where N is the number of terms in the tsidx
    if term not in self.terms:
      return
 
    for event_id in sorted(self.terms[term]):
      yield self.events[event_id]

Splunk代表一个拥有搜索功能的索引集合

每一个集合中包含一个布隆过滤器,一个倒排词表(字典),和一个存储所有事件的数组

当一个事件被加入到索引的时候,会做以下的逻辑

为每一个事件生成一个unqie id,这里就是序号

对事件进行分词,把每一个词加入到倒排词表,也就是每一个词对应的事件的id的映射结构,注意,一个词可能对应多个事件,所以倒排表的的值是一个Set。倒排表是绝大部分搜索引擎的核心功能。

当一个词被搜索的时候,会做以下的逻辑

检查布隆过滤器,如果为假,直接返回

检查词表,如果被搜索单词不在词表中,直接返回

在倒排表中找到所有对应的事件id,然后返回事件的内容

我们运行下看看把:

s = Splunk()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')
 
for event in s.search('1.2.3.4'):
  print event
print '-'
for event in s.search('src_ip'):
  print event
print '-'
for event in s.search('ip'):
  print event
src_ip = 1.2.3.4
dst_ip = 1.2.3.4
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4

是不是很赞!

更复杂的搜索

更进一步,在搜索过程中,我们想用And和Or来实现更复杂的搜索逻辑。

上代码:

class SplunkM(object):
  def __init__(self):
    self.bf = Bloomfilter(64)
    self.terms = {} # Dictionary of term to set of events
    self.events = []
  
  def add_event(self, event):
    """Adds an event to this object"""
 
    # Generate a unique ID for the event, and save it
    event_id = len(self.events)
    self.events.append(event)
 
    # Add each term to the bloomfilter, and track the event by each term
    for term in segments(event):
      self.bf.add_value(term)
      if term not in self.terms:
        self.terms[term] = set()
      
      self.terms[term].add(event_id)
 
  def search_all(self, terms):
    """Search for an AND of all terms"""
 
    # Start with the universe of all events...
    results = set(range(len(self.events)))
 
    for term in terms:
      # If a term isn't present at all then we can stop looking
      if not self.bf.might_contain(term):
        return
      if term not in self.terms:
        return
 
      # Drop events that don't match from our results
      results = results.intersection(self.terms[term])
 
    for event_id in sorted(results):
      yield self.events[event_id]
 
 
  def search_any(self, terms):
    """Search for an OR of all terms"""
    results = set()
 
    for term in terms:
      # If a term isn't present, we skip it, but don't stop
      if not self.bf.might_contain(term):
        continue
      if term not in self.terms:
        continue
 
      # Add these events to our results
      results = results.union(self.terms[term])
 
    for event_id in sorted(results):
      yield self.events[event_id]

利用Python集合的intersection和union操作,可以很方便的支持And(求交集)和Or(求合集)的操作。

运行结果如下:

s = SplunkM()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')
 
for event in s.search_all(['src_ip', '5.6']):
  print event
print '-'
for event in s.search_any(['src_ip', 'dst_ip']):
  print event
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4
Python 相关文章推荐
python正则匹配查询港澳通行证办理进度示例分享
Dec 27 Python
详解Python中用于计算指数的exp()方法
May 14 Python
python算法表示概念扫盲教程
Apr 13 Python
基于Python3 逗号代码 和 字符图网格(详谈)
Jun 22 Python
python XlsxWriter模块创建aexcel表格的实例讲解
May 03 Python
Python根据已知邻接矩阵绘制无向图操作示例
Jun 23 Python
python3 http提交json参数并获取返回值的方法
Dec 19 Python
selenium 多窗口切换的实现(windows)
Jan 18 Python
使用TensorFlow搭建一个全连接神经网络教程
Feb 06 Python
Python基于stuck实现scoket文件传输
Apr 02 Python
pycharm-professional-2020.1下载与激活的教程
Sep 21 Python
基于Python实现将列表数据生成折线图
Mar 23 Python
python输入错误密码用户锁定实现方法
Nov 27 #Python
动态规划之矩阵连乘问题Python实现方法
Nov 27 #Python
Python基于贪心算法解决背包问题示例
Nov 27 #Python
Python标准模块--ContextManager上下文管理器的具体用法
Nov 27 #Python
利用信号如何监控Django模型对象字段值的变化详解
Nov 27 #Python
深入理解Python中range和xrange的区别
Nov 26 #Python
PyCharm在win10的64位系统安装实例
Nov 26 #Python
You might like
CI(CodeIgniter)框架介绍
2014/06/09 PHP
谈谈PHP中substr和substring的正确用法及相关参数的介绍
2015/12/16 PHP
ThinkPHP3.2.3实现分页的方法详解
2016/06/03 PHP
Yii2中SqlDataProvider用法示例
2016/09/22 PHP
PHP执行shell脚本运行程序不产生core文件的方法
2016/12/28 PHP
利用javascript判断文件是否存在
2013/12/31 Javascript
jquery.multiselect多选下拉框实现代码
2016/11/11 Javascript
jQuery使用JSONP实现跨域获取数据的三种方法详解
2017/05/04 jQuery
微信小程序 转发功能的实现
2017/08/04 Javascript
详解利用 Express 托管静态文件的方法
2017/09/18 Javascript
Bootstrap图片轮播效果详解
2017/10/17 Javascript
js自定义input文件上传样式
2018/10/26 Javascript
vue3 watch和watchEffect的使用以及有哪些区别
2021/01/26 Vue.js
[01:18:21]EG vs TNC Supermajor小组赛B组败者组第一轮 BO3 第一场 6.2
2018/06/03 DOTA
解决谷歌搜索技术文章时打不开网页问题的python脚本
2013/02/10 Python
python Socket之客户端和服务端握手详解
2017/09/18 Python
python实现redis三种cas事务操作
2017/12/19 Python
Python实现两个list求交集,并集,差集的方法示例
2018/08/02 Python
浅析python3字符串格式化format()函数的简单用法
2018/12/07 Python
使用python进行拆分大文件的方法
2018/12/10 Python
实例详解Python模块decimal
2019/06/26 Python
python+selenium+Chrome options参数的使用
2020/03/18 Python
PyInstaller将Python文件打包为exe后如何反编译(破解源码)以及防止反编译
2020/04/15 Python
python爬虫基础知识点整理
2020/06/02 Python
简单几步用纯CSS3实现3D翻转效果
2019/01/17 HTML / CSS
企业形象策划方案
2014/05/29 职场文书
省级优秀毕业生主要事迹
2014/05/29 职场文书
环境监测与治理技术专业求职信
2014/07/06 职场文书
党支部特色活动方案
2014/08/20 职场文书
七一讲话心得体会
2014/09/05 职场文书
一份没有按时交货失信于客户的检讨书
2014/09/19 职场文书
反四风对照检查材料
2014/09/22 职场文书
爱的承诺书
2015/01/20 职场文书
2015年学习部工作总结范文
2015/03/31 职场文书
Android Studio 计算器开发
2022/05/20 Java/Android
聊聊配置 Nginx 访问与错误日志的问题
2022/05/25 Servers