初步解析Python中的yield函数的用法


Posted in Python onApril 03, 2015

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契?盗?/strong>

斐波那契(Fibonacci)?盗惺且桓龇浅<虻サ牡莨槭?校??谝桓龊偷诙?鍪?猓?我庖桓鍪?伎捎汕傲礁鍪?嗉拥玫健S眉扑慊?绦蚴涑鲮巢?瞧?盗械那 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契?盗星 N 个数
 

def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
  print b
  a, b = b, a + b
  n = n + 1

执行 fab(5),我们可以得到如下输出:
 

>>> fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契?盗星 N 个数第二版
 

def fab(max):
 n, a, b = 0, 0, 1
 L = []
 while n < max:
  L.append(b)
  a, b = b, a + b
  n = n + 1
 return L

可以使用如下方式打印出 fab 函数返回的 List:
 

>>> for n in fab(5):
...  print n
...
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代
 

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:
 

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本

class Fab(object):
 
 def __init__(self, max):
  self.max = max
  self.n, self.a, self.b = 0, 0, 1
 
 def __iter__(self):
  return self
 
 def next(self):
  if self.n < self.max:
   r = self.b
   self.a, self.b = self.b, self.a + self.b
   self.n = self.n + 1
   return r
  raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
 

>>> for n in Fab(5):
...  print n
...

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
 

def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
  yield b
  # print b
  a, b = b, a + b
  n = n + 1
 
'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:
 

>>> for n in fab(5):
...  print n
...

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程
 

>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断
 

>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例
 

>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True

fab 是无法迭代的,而 fab(5) 是可迭代的:
 

>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
 

def read_file(fpath):
 BLOCK_SIZE = 1024
 with open(fpath, 'rb') as f:
  while True:
   block = f.read(BLOCK_SIZE)
   if block:
    yield block
   else:
    return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

Python 相关文章推荐
python算法学习之计数排序实例
Dec 18 Python
Win7上搭建Cocos2d-x 3.1.1开发环境
Jul 03 Python
用ReactJS和Python的Flask框架编写留言板的代码示例
Dec 19 Python
python的exec、eval使用分析
Dec 11 Python
tf.truncated_normal与tf.random_normal的详细用法
Mar 05 Python
配置 Pycharm 默认 Test runner 的图文教程
Nov 30 Python
对python操作kafka写入json数据的简单demo分享
Dec 27 Python
Python多线程原理与用法实例剖析
Jan 22 Python
Python 分发包中添加额外文件的方法
Aug 16 Python
numpy求平均值的维度设定的例子
Aug 24 Python
python 实现屏幕录制示例
Dec 23 Python
关于pytorch处理类别不平衡的问题
Dec 31 Python
几个提升Python运行效率的方法之间的对比
Apr 03 #Python
对于Python的Django框架使用的一些实用建议
Apr 03 #Python
《Python之禅》中对于Python编程过程中的一些建议
Apr 03 #Python
给Python初学者的一些编程技巧
Apr 03 #Python
Python新手在作用域方面经常容易碰到的问题
Apr 03 #Python
Python中设置变量作为默认值时容易遇到的错误
Apr 03 #Python
用Python编写一个简单的Lisp解释器的教程
Apr 03 #Python
You might like
php+mysql分页代码详解
2008/03/27 PHP
PHP 模拟登陆MSN并获得用户信息
2009/05/16 PHP
PHP基于php_imagick_st-Q8.dll实现JPG合成GIF图片的方法
2014/07/11 PHP
PHP图像裁剪缩略裁切类源码及使用方法
2016/01/07 PHP
php可变长参数处理函数详解
2017/02/22 PHP
php递归函数怎么用才有效
2018/02/24 PHP
IE浏览器兼容Firefox的JS脚本的代码
2008/10/23 Javascript
分享JavaScript获取网页关闭与取消关闭的事件
2013/12/13 Javascript
JS获取随机数函数可自定义最小值最大值
2014/05/08 Javascript
Javascript中Array用法实例分析
2015/06/13 Javascript
js实现京东轮播图效果
2017/06/30 Javascript
JavaScript之Canvas_动力节点Java学院整理
2017/07/04 Javascript
JS仿QQ好友列表展开、收缩功能(第一篇)
2017/07/07 Javascript
vue使用drag与drop实现拖拽的示例代码
2017/09/07 Javascript
nodejs高大上的部署方式(PM2)
2018/09/11 NodeJs
Webpack之tree-starking 解析
2018/09/11 Javascript
记一次用vue做的活动页的方法步骤
2019/04/11 Javascript
JS删除对象中某一属性案例详解
2020/09/08 Javascript
Django数据库表反向生成实例解析
2018/02/06 Python
Python遍历文件夹 处理json文件的方法
2019/01/22 Python
PyQt+socket实现远程操作服务器的方法示例
2019/08/22 Python
Python+Django+MySQL实现基于Web版的增删改查的示例代码
2020/05/13 Python
jupyter notebook的安装与使用详解
2020/05/18 Python
PyCharm2020.1.2社区版安装,配置及使用教程详解(Windows)
2020/08/07 Python
使用CSS3制作一个简单的Chrome模拟器
2015/07/15 HTML / CSS
法国在线宠物店:zooplus.fr
2018/02/23 全球购物
玛蒂尔达简服装:Matilda Jane Clothing
2019/02/13 全球购物
新驾驶员个人自我评价
2014/01/03 职场文书
工程造价专业求职信
2014/07/17 职场文书
单位一把手群众路线四风问题整改措施
2014/09/25 职场文书
学校师德师风整改措施
2014/10/27 职场文书
2019各种承诺书范文
2019/06/24 职场文书
nginx基于域名,端口,不同IP的虚拟主机设置的实现
2021/03/31 Servers
Idea连接MySQL数据库出现中文乱码的问题
2021/04/14 MySQL
Python+Appium自动化测试的实战
2021/06/30 Python
Python 键盘事件详解
2021/11/11 Python