分析SQL窗口函数之取值窗口函数


Posted in Oracle onApril 21, 2022

关于窗口函数的基础,请看文章详解SQL的窗口函数

取值窗口函数可以用于返回窗口内指定位置的数据行。常见的取值窗口函数如下:

  • LAG函数可以返回窗口内当前行之前的第N行数据。
  • LEAD函数可以返回窗口内当前行之后的第N行数据。
  • FIRST_VALUE函数可以返回窗口内第一行数据。
  • LAST_VALUE函数可以返回窗口内最后一行数据。
  • NTH_VALUE函数可以返回窗口内第N行数据。

其中,LAG函数和LEAD函数不支持动态的窗口大小,它们以整个分区作为分析的窗口。

案例分析

案例使用的示例表

下面的查询中会用到一张表,sales_monthly表中存储了商品销量信息,product表示产品名称,ym表示年月,amount表示销售金额(元)。

以下是该表中的部分数据:

分析SQL窗口函数之取值窗口函数

这个表的初始化脚本可以在文章底部获取。

1.环比分析

环比增长指的是本期数据与上期数据相比的增长,例如,产品2019年6月的销售额与2019年5月的销售额相比增加的部分。

以下语句统计了各种产品每个月的环比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "环比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,1)表示获取上一期的销售额,PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去上一期的销售额,再除以上一期的销售额,就是环比增长率。

该查询返回的结果如下: 

分析SQL窗口函数之取值窗口函数

2018年1月是第一期,因此其环比增长率为空。

“桔子”2018年2月的环比增长率约为0.2856%((10183-10154)/10154×100),依此类推。

2.同比分析

同比增长指的是本期数据与上一年度或历史同期相比的增长,例如,产品2019年6月的销售额与2018年6月的销售额相比增加的部分。

以下语句统计了各种产品每个月的同比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "同比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,12)表示当前月份之前第12期的销售额,也就是去年同月份的销售额。

PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去去年同期的销售额,再除以去年同期的销售额,就是同比增长率。

该查询返回的结果如下:

 

分析SQL窗口函数之取值窗口函数

2018年的12期数据都没有对应的同比增长率,“桔子”2019年1月的同比增长率约为9.3067%((11099-10154)/10154×100),依此类推。

提示:LEAD函数与LAG函数的使用方法类似,不过它的返回结果是当前行之后的第N行数据。

3.复合增长率

复合增长率是第N期的数据除以第一期的基准数据,然后开N-1次方再减去1得到的结果。

假如2018年的产品销售额为10000,2019年的产品销售额为12500,2020年的产品销售额为15000。那么这两年的复合增长率的计算方式如下:

分析SQL窗口函数之取值窗口函数

以年度为单位计算的复合增长率被称为年均复合增长率,以月度为单位计算的复合增长率被称为月均复合增长率

以下查询统计了自2018年1月以来不同产品的月均销售额复合增长率:

WITH s (product,ym,amount,first_amount,num) AS (
  SELECT m.product, m.ym, m.amount,
  FIRST_VALUE(m.amount) OVER (PARTITION BY m.product ORDER BY m.ym),
  ROW_NUMBER() OVER (PARTITION BY m.product ORDER BY m.ym)
  FROM sales_monthly m
)
 
SELECT product AS "产品", ym AS "年月",amount AS "销售额",
       (POWER( amount/first_amount, 1.0/NULLIF(num-1,0)) -1)*100 AS "月均复合增长率(%)"
FROM s
ORDER BY product, ym

首先定义了一个通用表表达式,其中FIRST_VALUE(amount)返回了第一期(201801)的销售额,ROW_NUMBER函数返回了每一期的编号。

主查询中的POWER函数用于执行开方运算,NULLIF函数用于处理第一期数据的除零错误,常量1.0用于避免由整数除法所导致的精度丢失问题。

该查询返回的结果如下:

分析SQL窗口函数之取值窗口函数

2018年1月是第一期,因此其产品月均销售额复合增长率为空。

“桔子”2018年2月的月均销售额复合增长率等于它的环比增长率,2018年3月的月均销售额复合增长率等于0.4471%,依此类推。 

4.不同产品最高和最低销售额

以下语句统计了不同产品最低销售额、最高销售额以及第三高销售额所在的月份:

SELECT product AS "产品", ym AS "年月",amount AS "销售额",
  
         FIRST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最高销售额月份",
         
         LAST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最低销售额月份",
         
         NTH_VALUE(m.ym,3) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "第三高销售额月份"
 
  FROM sales_monthly m
  ORDER BY product, ym;

三个窗口函数的OVER子句相同,PARTITION BY选项表示按照产品进行分区,ORDER BY选项表示按照销售额从高到低排序。

以上三个函数的默认窗口都是从分区的第一行到当前行,因此我们将窗口扩展到了整个分区。

该查询返回的结果如下: 

分析SQL窗口函数之取值窗口函数

“桔子”的最高销售额出现在2019年6月,最低销售额出现在2018年1月,第三高销售额出现在2019年4月。

示例表和脚本

-- 创建销量表sales_monthly
-- product表示产品名称,ym表示年月,amount表示销售金额(元)
CREATE TABLE sales_monthly(product VARCHAR(20), ym VARCHAR(10), amount NUMERIC(10, 2));
 
-- 生成测试数据
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201801',10159.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201802',10211.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201803',10247.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201804',10376.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201805',10400.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201806',10565.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201807',10613.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201808',10696.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201809',10751.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201810',10842.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201811',10900.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201812',10972.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201901',11155.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201902',11202.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201903',11260.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201904',11341.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201905',11459.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201906',11560.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201801',10138.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201802',10194.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201803',10328.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201804',10322.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201805',10481.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201806',10502.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201807',10589.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201808',10681.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201809',10798.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201810',10829.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201811',10913.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201812',11056.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201901',11161.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201902',11173.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201903',11288.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201904',11408.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201905',11469.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201906',11528.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201801',10154.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201802',10183.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201803',10245.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201804',10325.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201805',10465.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201806',10505.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201807',10578.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201808',10680.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201809',10788.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201810',10838.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201811',10942.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201812',10988.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201901',11099.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201902',11181.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201903',11302.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201904',11327.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201905',11423.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201906',11524.00);

到此这篇关于SQL窗口函数之取值窗口函数的使用的文章就介绍到这了!


Tags in this post...

Oracle 相关文章推荐
Oracle笔记
Apr 05 Oracle
Oracle 数据仓库ETL技术之多表插入语句的示例详解
Apr 12 Oracle
使用Oracle跟踪文件的问题详解
Jun 28 Oracle
Oracle以逗号分隔的字符串拆分为多行数据实例详解
Jul 16 Oracle
oracle连接ODBC sqlserver数据源的详细步骤
Jul 25 Oracle
RPM包方式安装Oracle21c的方法详解
Aug 23 Oracle
Oracle安装TNS_ADMIN环境变量设置参考
Nov 01 Oracle
分析SQL窗口函数之排名窗口函数
Apr 21 Oracle
Oracle中日期的使用方法实例
Jul 07 Oracle
Oracle查看表空间使用率以及爆满解决方案详解
Jul 23 Oracle
分析SQL窗口函数之排名窗口函数
Apr 21 #Oracle
分析SQL窗口函数之聚合窗口函数
Apr 21 #Oracle
详解SQL的窗口函数
排查并解决Oracle sysaux表空间异常增长
Oracle使用别名的好处
Oracle 多表查询基本语法实例
Apr 18 #Oracle
Lakehouse数据湖并发控制陷阱分析
You might like
常用星际术语索引(新手指南)
2020/03/04 星际争霸
php 破解防盗链图片函数
2008/12/09 PHP
php中一个完整表单处理实现代码
2011/11/10 PHP
php中导出数据到excel时数字变为科学计数的解决方法
2013/02/03 PHP
分享下页面关键字抓取www.icbase.com站点代码(带asp.net参数的)
2014/01/30 PHP
yii的CURD操作实例详解
2014/12/04 PHP
PHP中使用Memache作为进程锁的操作类分享
2015/03/30 PHP
分享PHP守护进程类
2015/12/30 PHP
ie8模式下click无反应点击option无反应的解决方法
2014/10/11 Javascript
javascript实现点击后变换按钮显示文字的方法
2015/05/13 Javascript
javascript实现行拖动的方法
2015/05/27 Javascript
文本框只能输入数字的实现方法(兼容IE火狐)
2016/06/25 Javascript
原生js封装的一些jquery方法(详解)
2016/09/20 Javascript
JS动态修改网页body的背景色实例代码
2017/10/07 Javascript
基于vue2实现上拉加载功能
2017/11/28 Javascript
Servlet3.0与纯javascript通过Ajax交互的实例详解
2018/03/18 Javascript
JS数组扁平化(flat)方法总结详解
2019/06/24 Javascript
8个有意思的JavaScript面试题
2019/07/30 Javascript
微信公众号平台接口开发 获取access_token过程解析
2019/08/14 Javascript
Python中文字符串截取问题
2015/06/15 Python
通过数据库对Django进行删除字段和删除模型的操作
2015/07/21 Python
Python中用字符串调用函数或方法示例代码
2017/08/04 Python
Python3实现的简单三级菜单功能示例
2019/03/12 Python
Python Django给admin添加Action的方法实例详解
2019/04/29 Python
Python socket模块方法实现详解
2019/11/05 Python
Python多线程Threading、子线程与守护线程实例详解
2020/03/24 Python
python将dict中的unicode打印成中文实例
2020/05/11 Python
html5+css3之CSS中的布局与Header的实现
2014/11/21 HTML / CSS
HTML5 常见面试题之PC端和移动端区别介绍
2018/01/22 HTML / CSS
潘多拉珠宝俄罗斯官方网上商店:PANDORA俄罗斯
2020/09/22 全球购物
J2SDK1.5与J2SDK5.0有什么区别
2012/09/19 面试题
在校证明模板
2015/06/17 职场文书
呐喊读书笔记
2015/06/30 职场文书
迎客户欢迎词三篇
2019/09/27 职场文书
Python序列化与反序列化相关知识总结
2021/06/08 Python
Redis 异步机制
2022/05/15 Redis