分析SQL窗口函数之取值窗口函数


Posted in Oracle onApril 21, 2022

关于窗口函数的基础,请看文章详解SQL的窗口函数

取值窗口函数可以用于返回窗口内指定位置的数据行。常见的取值窗口函数如下:

  • LAG函数可以返回窗口内当前行之前的第N行数据。
  • LEAD函数可以返回窗口内当前行之后的第N行数据。
  • FIRST_VALUE函数可以返回窗口内第一行数据。
  • LAST_VALUE函数可以返回窗口内最后一行数据。
  • NTH_VALUE函数可以返回窗口内第N行数据。

其中,LAG函数和LEAD函数不支持动态的窗口大小,它们以整个分区作为分析的窗口。

案例分析

案例使用的示例表

下面的查询中会用到一张表,sales_monthly表中存储了商品销量信息,product表示产品名称,ym表示年月,amount表示销售金额(元)。

以下是该表中的部分数据:

分析SQL窗口函数之取值窗口函数

这个表的初始化脚本可以在文章底部获取。

1.环比分析

环比增长指的是本期数据与上期数据相比的增长,例如,产品2019年6月的销售额与2019年5月的销售额相比增加的部分。

以下语句统计了各种产品每个月的环比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "环比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,1)表示获取上一期的销售额,PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去上一期的销售额,再除以上一期的销售额,就是环比增长率。

该查询返回的结果如下: 

分析SQL窗口函数之取值窗口函数

2018年1月是第一期,因此其环比增长率为空。

“桔子”2018年2月的环比增长率约为0.2856%((10183-10154)/10154×100),依此类推。

2.同比分析

同比增长指的是本期数据与上一年度或历史同期相比的增长,例如,产品2019年6月的销售额与2018年6月的销售额相比增加的部分。

以下语句统计了各种产品每个月的同比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "同比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,12)表示当前月份之前第12期的销售额,也就是去年同月份的销售额。

PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去去年同期的销售额,再除以去年同期的销售额,就是同比增长率。

该查询返回的结果如下:

 

分析SQL窗口函数之取值窗口函数

2018年的12期数据都没有对应的同比增长率,“桔子”2019年1月的同比增长率约为9.3067%((11099-10154)/10154×100),依此类推。

提示:LEAD函数与LAG函数的使用方法类似,不过它的返回结果是当前行之后的第N行数据。

3.复合增长率

复合增长率是第N期的数据除以第一期的基准数据,然后开N-1次方再减去1得到的结果。

假如2018年的产品销售额为10000,2019年的产品销售额为12500,2020年的产品销售额为15000。那么这两年的复合增长率的计算方式如下:

分析SQL窗口函数之取值窗口函数

以年度为单位计算的复合增长率被称为年均复合增长率,以月度为单位计算的复合增长率被称为月均复合增长率

以下查询统计了自2018年1月以来不同产品的月均销售额复合增长率:

WITH s (product,ym,amount,first_amount,num) AS (
  SELECT m.product, m.ym, m.amount,
  FIRST_VALUE(m.amount) OVER (PARTITION BY m.product ORDER BY m.ym),
  ROW_NUMBER() OVER (PARTITION BY m.product ORDER BY m.ym)
  FROM sales_monthly m
)
 
SELECT product AS "产品", ym AS "年月",amount AS "销售额",
       (POWER( amount/first_amount, 1.0/NULLIF(num-1,0)) -1)*100 AS "月均复合增长率(%)"
FROM s
ORDER BY product, ym

首先定义了一个通用表表达式,其中FIRST_VALUE(amount)返回了第一期(201801)的销售额,ROW_NUMBER函数返回了每一期的编号。

主查询中的POWER函数用于执行开方运算,NULLIF函数用于处理第一期数据的除零错误,常量1.0用于避免由整数除法所导致的精度丢失问题。

该查询返回的结果如下:

分析SQL窗口函数之取值窗口函数

2018年1月是第一期,因此其产品月均销售额复合增长率为空。

“桔子”2018年2月的月均销售额复合增长率等于它的环比增长率,2018年3月的月均销售额复合增长率等于0.4471%,依此类推。 

4.不同产品最高和最低销售额

以下语句统计了不同产品最低销售额、最高销售额以及第三高销售额所在的月份:

SELECT product AS "产品", ym AS "年月",amount AS "销售额",
  
         FIRST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最高销售额月份",
         
         LAST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最低销售额月份",
         
         NTH_VALUE(m.ym,3) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "第三高销售额月份"
 
  FROM sales_monthly m
  ORDER BY product, ym;

三个窗口函数的OVER子句相同,PARTITION BY选项表示按照产品进行分区,ORDER BY选项表示按照销售额从高到低排序。

以上三个函数的默认窗口都是从分区的第一行到当前行,因此我们将窗口扩展到了整个分区。

该查询返回的结果如下: 

分析SQL窗口函数之取值窗口函数

“桔子”的最高销售额出现在2019年6月,最低销售额出现在2018年1月,第三高销售额出现在2019年4月。

示例表和脚本

-- 创建销量表sales_monthly
-- product表示产品名称,ym表示年月,amount表示销售金额(元)
CREATE TABLE sales_monthly(product VARCHAR(20), ym VARCHAR(10), amount NUMERIC(10, 2));
 
-- 生成测试数据
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201801',10159.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201802',10211.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201803',10247.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201804',10376.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201805',10400.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201806',10565.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201807',10613.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201808',10696.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201809',10751.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201810',10842.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201811',10900.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201812',10972.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201901',11155.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201902',11202.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201903',11260.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201904',11341.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201905',11459.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201906',11560.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201801',10138.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201802',10194.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201803',10328.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201804',10322.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201805',10481.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201806',10502.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201807',10589.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201808',10681.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201809',10798.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201810',10829.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201811',10913.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201812',11056.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201901',11161.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201902',11173.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201903',11288.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201904',11408.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201905',11469.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201906',11528.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201801',10154.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201802',10183.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201803',10245.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201804',10325.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201805',10465.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201806',10505.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201807',10578.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201808',10680.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201809',10788.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201810',10838.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201811',10942.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201812',10988.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201901',11099.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201902',11181.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201903',11302.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201904',11327.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201905',11423.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201906',11524.00);

到此这篇关于SQL窗口函数之取值窗口函数的使用的文章就介绍到这了!


Tags in this post...

Oracle 相关文章推荐
Oracle笔记
Apr 05 Oracle
oracle表分区的概念及操作
Apr 24 Oracle
Oracle设置DB、监听和EM开机启动的方法
Apr 25 Oracle
使用springboot暴露oracle数据接口的问题
May 07 Oracle
SQL模糊查询报:ORA-00909:参数个数无效问题的解决
Jun 21 Oracle
快速学习Oracle触发器和游标
Jun 30 Oracle
Oracle以逗号分隔的字符串拆分为多行数据实例详解
Jul 16 Oracle
Oracle表空间与权限的深入讲解
Nov 17 Oracle
使用Oracle命令进行数据库备份与还原
Dec 06 Oracle
Oracle中update和select 关联操作
Jan 18 Oracle
Oracle中DBLink的详细介绍
Apr 29 Oracle
分析SQL窗口函数之排名窗口函数
Apr 21 #Oracle
分析SQL窗口函数之聚合窗口函数
Apr 21 #Oracle
详解SQL的窗口函数
排查并解决Oracle sysaux表空间异常增长
Oracle使用别名的好处
Oracle 多表查询基本语法实例
Apr 18 #Oracle
Lakehouse数据湖并发控制陷阱分析
You might like
分享ThinkPHP3.2中关联查询解决思路
2015/09/20 PHP
一个实用的php验证码类
2017/07/06 PHP
php高性能日志系统 seaslog 的安装与使用方法分析
2020/02/29 PHP
JQuery each()函数如何优化循环DOM结构的性能
2012/12/10 Javascript
JavaScript限定复选框的选择个数示例代码
2013/08/25 Javascript
js正则表达式中test,exec,match方法的区别说明
2014/01/29 Javascript
jquery实现适用于门户站的导航下拉菜单效果代码
2015/08/24 Javascript
浅谈Javascript数组(推荐)
2016/05/17 Javascript
浅谈angularJS中的事件
2016/07/12 Javascript
javascript简单进制转换实现方法
2016/11/24 Javascript
vue双向绑定的简单实现
2016/12/22 Javascript
详解Jquery Easyui的验证扩展
2017/01/09 Javascript
AngularJS使用拦截器实现的loading功能完整实例
2017/05/17 Javascript
Vuejs 2.0 子组件访问/调用父组件的方法(示例代码)
2018/02/08 Javascript
Es6 Generator函数详细解析
2018/02/24 Javascript
基于layui框架响应式布局的一些使用详解
2019/09/16 Javascript
浅谈如何优雅处理JavaScript异步错误
2019/11/12 Javascript
微信小程序图片自适应实现解析
2020/01/21 Javascript
python学习笔记:字典的使用示例详解
2014/06/13 Python
django开发教程之利用缓存文件进行页面缓存的方法
2017/11/10 Python
django主动抛出403异常的方法详解
2019/01/04 Python
Pycharm远程调试原理及具体配置详解
2019/08/08 Python
python求平均数、方差、中位数的例子
2019/08/22 Python
通过Turtle库在Python中绘制一个鼠年福鼠
2020/02/03 Python
PyQt5实现简单的计算器
2020/05/30 Python
python 解决mysql where in 对列表(list,,array)问题
2020/06/06 Python
使用HTML5的File实现base64和图片的互转
2013/08/01 HTML / CSS
英国家喻户晓的高街品牌:River Island
2017/11/28 全球购物
优秀班干部事迹材料
2014/01/26 职场文书
秘书英文求职信
2014/04/16 职场文书
推广普通话演讲稿
2014/05/23 职场文书
学校端午节活动方案
2014/08/23 职场文书
关于成立领导小组的通知
2015/04/23 职场文书
2015年公司后勤管理工作总结
2015/05/13 职场文书
国庆阅兵观后感
2015/06/15 职场文书
Python中的min及返回最小值索引的操作
2021/05/10 Python