分析SQL窗口函数之排名窗口函数


Posted in Oracle onApril 21, 2022

关于窗口函数的基础,请看文章详解SQL的窗口函数

取值窗口函数可以用于返回窗口内指定位置的数据行。常见的取值窗口函数如下:

LAG函数可以返回窗口内当前行之前的第N行数据。LEAD函数可以返回窗口内当前行之后的第N行数据。FIRST_VALUE函数可以返回窗口内第一行数据。LAST_VALUE函数可以返回窗口内最后一行数据。NTH_VALUE函数可以返回窗口内第N行数据。

其中,LAG函数和LEAD函数不支持动态的窗口大小,它们以整个分区作为分析的窗口。

案例分析

案例使用的示例表

下面的查询中会用到一张表,sales_monthly表中存储了商品销量信息,product表示产品名称,ym表示年月,amount表示销售金额(元)。

以下是该表中的部分数据:

分析SQL窗口函数之排名窗口函数

这个表的初始化脚本可以在文章底部获取。

1.环比分析

环比增长指的是本期数据与上期数据相比的增长,例如,产品2019年6月的销售额与2019年5月的销售额相比增加的部分。

以下语句统计了各种产品每个月的环比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "环比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,1)表示获取上一期的销售额,PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去上一期的销售额,再除以上一期的销售额,就是环比增长率。

该查询返回的结果如下: 

分析SQL窗口函数之排名窗口函数

2018年1月是第一期,因此其环比增长率为空。

“桔子”2018年2月的环比增长率约为0.2856%((10183-10154)/10154×100),依此类推。

2.同比分析

同比增长指的是本期数据与上一年度或历史同期相比的增长,例如,产品2019年6月的销售额与2018年6月的销售额相比增加的部分。

以下语句统计了各种产品每个月的同比增长率:

SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
 ( 
    (s.amount - LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym))/
    LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym)
 ) * 100 AS "同比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym

其中,LAG(amount,12)表示当前月份之前第12期的销售额,也就是去年同月份的销售额。

PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。

当前月份的销售额amount减去去年同期的销售额,再除以去年同期的销售额,就是同比增长率。

该查询返回的结果如下:

分析SQL窗口函数之排名窗口函数

2018年的12期数据都没有对应的同比增长率,“桔子”2019年1月的同比增长率约为9.3067%((11099-10154)/10154×100),依此类推。

提示:LEAD函数与LAG函数的使用方法类似,不过它的返回结果是当前行之后的第N行数据。

3.复合增长率

复合增长率是第N期的数据除以第一期的基准数据,然后开N-1次方再减去1得到的结果。

假如2018年的产品销售额为10000,2019年的产品销售额为12500,2020年的产品销售额为15000。那么这两年的复合增长率的计算方式如下:

分析SQL窗口函数之排名窗口函数

以年度为单位计算的复合增长率被称为年均复合增长率,以月度为单位计算的复合增长率被称为月均复合增长率

以下查询统计了自2018年1月以来不同产品的月均销售额复合增长率:

WITH s (product,ym,amount,first_amount,num) AS (
  SELECT m.product, m.ym, m.amount,
  FIRST_VALUE(m.amount) OVER (PARTITION BY m.product ORDER BY m.ym),
  ROW_NUMBER() OVER (PARTITION BY m.product ORDER BY m.ym)
  FROM sales_monthly m
)
 
SELECT product AS "产品", ym AS "年月",amount AS "销售额",
       (POWER( amount/first_amount, 1.0/NULLIF(num-1,0)) -1)*100 AS "月均复合增长率(%)"
FROM s
ORDER BY product, ym

首先定义了一个通用表表达式,其中FIRST_VALUE(amount)返回了第一期(201801)的销售额,ROW_NUMBER函数返回了每一期的编号。

主查询中的POWER函数用于执行开方运算,NULLIF函数用于处理第一期数据的除零错误,常量1.0用于避免由整数除法所导致的精度丢失问题。

该查询返回的结果如下:

分析SQL窗口函数之排名窗口函数

2018年1月是第一期,因此其产品月均销售额复合增长率为空。

“桔子”2018年2月的月均销售额复合增长率等于它的环比增长率,2018年3月的月均销售额复合增长率等于0.4471%,依此类推。 

4.不同产品最高和最低销售额

以下语句统计了不同产品最低销售额、最高销售额以及第三高销售额所在的月份:

SELECT product AS "产品", ym AS "年月",amount AS "销售额",
  
         FIRST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最高销售额月份",
         
         LAST_VALUE(m.ym) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "最低销售额月份",
         
         NTH_VALUE(m.ym,3) OVER (
           PARTITION BY m.product ORDER BY m.amount DESC
           ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
         ) AS "第三高销售额月份"
 
  FROM sales_monthly m
  ORDER BY product, ym;

三个窗口函数的OVER子句相同,PARTITION BY选项表示按照产品进行分区,ORDER BY选项表示按照销售额从高到低排序。

以上三个函数的默认窗口都是从分区的第一行到当前行,因此我们将窗口扩展到了整个分区。

该查询返回的结果如下: 

分析SQL窗口函数之排名窗口函数

“桔子”的最高销售额出现在2019年6月,最低销售额出现在2018年1月,第三高销售额出现在2019年4月。

示例表和脚本

-- 创建销量表sales_monthly
-- product表示产品名称,ym表示年月,amount表示销售金额(元)
CREATE TABLE sales_monthly(product VARCHAR(20), ym VARCHAR(10), amount NUMERIC(10, 2));
 
-- 生成测试数据
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201801',10159.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201802',10211.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201803',10247.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201804',10376.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201805',10400.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201806',10565.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201807',10613.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201808',10696.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201809',10751.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201810',10842.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201811',10900.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201812',10972.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201901',11155.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201902',11202.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201903',11260.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201904',11341.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201905',11459.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201906',11560.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201801',10138.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201802',10194.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201803',10328.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201804',10322.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201805',10481.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201806',10502.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201807',10589.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201808',10681.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201809',10798.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201810',10829.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201811',10913.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201812',11056.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201901',11161.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201902',11173.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201903',11288.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201904',11408.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201905',11469.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201906',11528.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201801',10154.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201802',10183.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201803',10245.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201804',10325.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201805',10465.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201806',10505.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201807',10578.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201808',10680.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201809',10788.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201810',10838.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201811',10942.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201812',10988.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201901',11099.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201902',11181.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201903',11302.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201904',11327.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201905',11423.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201906',11524.00);

到此这篇关于SQL窗口函数之排名窗口函数的使用的文章就介绍到这了!


Tags in this post...

Oracle 相关文章推荐
Oracle笔记
Apr 05 Oracle
oracle DGMGRL ORA-16603报错的解决方法(DG Broker)
Apr 06 Oracle
使用springboot暴露oracle数据接口的问题
May 07 Oracle
使用Oracle跟踪文件的问题详解
Jun 28 Oracle
C#连接ORACLE出现乱码问题的解决方法
Oct 05 Oracle
Oracle表空间与权限的深入讲解
Nov 17 Oracle
详解Oracle数据库中自带的所有表结构(sql代码)
Nov 20 Oracle
详细聊聊Oracle表碎片对性能有多大的影响
Mar 19 Oracle
分析SQL窗口函数之聚合窗口函数
Apr 21 Oracle
Oracle锁表解决方法的详细记录
Jun 05 Oracle
分析SQL窗口函数之聚合窗口函数
Apr 21 #Oracle
详解SQL的窗口函数
排查并解决Oracle sysaux表空间异常增长
Oracle使用别名的好处
Oracle 多表查询基本语法实例
Apr 18 #Oracle
Lakehouse数据湖并发控制陷阱分析
Oracle数据库中通用的函数实例详解
You might like
php完全过滤HTML,JS,CSS等标签
2009/01/16 PHP
PHP PDO函数库详解
2010/04/27 PHP
浅析PHP Socket技术
2013/08/02 PHP
php全角字符转换为半角函数
2014/02/07 PHP
PHP生成随机密码方法汇总
2015/08/27 PHP
php提供实现反射的方法和实例代码
2019/09/17 PHP
jquery tools之tabs 选项卡/页签
2009/07/25 Javascript
js 省地市级联选择
2010/02/07 Javascript
基于JQuery的一句话搞定手风琴菜单
2012/09/14 Javascript
自定义jQuery选项卡插件实例
2013/03/27 Javascript
js中使用replace方法完成某个字符的转换
2014/08/20 Javascript
node.js实现快速截图
2016/08/27 Javascript
JavaScript组成、引入、输出、运算符基础知识讲解
2016/12/08 Javascript
将input框中输入内容显示在相应的div中【三种方法可选】
2017/05/08 Javascript
深入理解jquery的$.extend()、$.fn和$.fn.extend()
2017/07/08 jQuery
vue升级之路之vue-router的使用教程
2018/08/14 Javascript
Vue一次性简洁明了引入所有公共组件的方法
2018/11/28 Javascript
JS删除String里某个字符的方法
2021/01/06 Javascript
vue 在methods中调用mounted的实现操作
2020/08/07 Javascript
jQuery实现可以计算进制转换的计算器
2020/10/19 jQuery
python实现简单神经网络算法
2018/03/10 Python
通过Python 接口使用OpenCV的方法
2018/04/02 Python
python numpy 一维数组转变为多维数组的实例
2018/07/02 Python
基于Python的Post请求数据爬取的方法详解
2019/06/14 Python
Python实现粒子群算法的示例
2021/02/14 Python
全球销量第一生发产品:Viviscal
2017/12/21 全球购物
《小小竹排画中游》教学反思
2014/02/26 职场文书
企业管理毕业生求职信范文
2014/03/07 职场文书
中层干部培训方案
2014/06/16 职场文书
领导班子在批评与自我批评座谈会上的发言
2014/09/28 职场文书
2015年社区卫生工作总结
2015/04/21 职场文书
2015年建筑工作总结报告
2015/05/04 职场文书
现货白银电话营销话术
2015/05/29 职场文书
送给教师们,到底该如何写好教学反思?
2019/07/02 职场文书
gojs实现蚂蚁线动画效果
2022/02/18 Javascript
Redis配置外网可访问(redis远程连接不上)的方法
2022/12/24 Redis