Numpy实现卷积神经网络(CNN)的示例


Posted in Python onOctober 09, 2020
import numpy as np
import sys


def conv_(img, conv_filter):
  filter_size = conv_filter.shape[1]
  result = np.zeros((img.shape))
  # 循环遍历图像以应用卷积运算
  for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):
    for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):
      # 卷积的区域
      curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),
             c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]
      # 卷积操作
      curr_result = curr_region * conv_filter
      conv_sum = np.sum(curr_result)
      # 将求和保存到特征图中
      result[r, c] = conv_sum

    # 裁剪结果矩阵的异常值
  final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),
          np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]
  return final_result


def conv(img, conv_filter):
  # 检查图像通道的数量是否与过滤器深度匹配
  if len(img.shape) > 2 or len(conv_filter.shape) > 3:
    if img.shape[-1] != conv_filter.shape[-1]:
      print("错误:图像和过滤器中的通道数必须匹配")
      sys.exit()

  # 检查过滤器是否是方阵
  if conv_filter.shape[1] != conv_filter.shape[2]:
    print('错误:过滤器必须是方阵')
    sys.exit()

  # 检查过滤器大小是否是奇数
  if conv_filter.shape[1] % 2 == 0:
    print('错误:过滤器大小必须是奇数')
    sys.exit()

  # 定义一个空的特征图,用于保存过滤器与图像的卷积输出
  feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,
               img.shape[1] - conv_filter.shape[1] + 1,
               conv_filter.shape[0]))

  # 卷积操作
  for filter_num in range(conv_filter.shape[0]):
    print("Filter ", filter_num + 1)
    curr_filter = conv_filter[filter_num, :]

    # 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。
    if len(curr_filter.shape) > 2:
      conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
      for ch_num in range(1, curr_filter.shape[-1]):
        conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])
    else:
      conv_map = conv_(img, curr_filter)
    feature_maps[:, :, filter_num] = conv_map
  return feature_maps


def pooling(feature_map, size=2, stride=2):
  # 定义池化操作的输出
  pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
             np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
             feature_map.shape[-1]))

  for map_num in range(feature_map.shape[-1]):
    r2 = 0
    for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
      c2 = 0
      for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
        pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])
        c2 = c2 + 1
      r2 = r2 + 1
  return pool_out
import skimage.data
import numpy
import matplotlib
import matplotlib.pyplot as plt
import NumPyCNN as numpycnn

# 读取图像
img = skimage.data.chelsea()
# 转成灰度图像
img = skimage.color.rgb2gray(img)

# 初始化卷积核
l1_filter = numpy.zeros((2, 3, 3))
# 检测垂直边缘
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
# 检测水平边缘
l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])

"""
第一个卷积层
"""
# 卷积操作
l1_feature_map = numpycnn.conv(img, l1_filter)
# ReLU
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
# Pooling
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)

"""
第二个卷积层
"""
# 初始化卷积核
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
# 卷积操作
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
# ReLU
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
# Pooling
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)

"""
第三个卷积层
"""
# 初始化卷积核
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
# 卷积操作
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
# ReLU
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
# Pooling
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)

"""
结果可视化
"""
fig0, ax0 = plt.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
plt.savefig("in_img1.png", bbox_inches="tight")
plt.close(fig0)

# 第一层
fig1, ax1 = plt.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1")

ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2")

ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU")

ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU")

ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool")

ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool")

plt.savefig("L1.png", bbox_inches="tight")
plt.close(fig1)

# 第二层
fig2, ax2 = plt.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1")

ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2")

ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3")

ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU")

ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU")

ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU")

ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool")

ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool")

ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool")

plt.savefig("L2.png", bbox_inches="tight")
plt.close(fig2)

# 第三层
fig3, ax3 = plt.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1")

ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU")

ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool")

plt.savefig("L3.png", bbox_inches="tight")
plt.close(fig3)

以上就是Numpy实现卷积神经网络(CNN)的示例的详细内容,更多关于Numpy实现卷积神经网络的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python编程中time模块的一些关键用法解析
Jan 19 Python
Python3 加密(hashlib和hmac)模块的实现
Nov 23 Python
python消费kafka数据批量插入到es的方法
Dec 27 Python
nohup后台启动Python脚本,log不刷新的解决方法
Jan 14 Python
TensorFlow索引与切片的实现方法
Nov 20 Python
python单例设计模式实现解析
Jan 07 Python
django Layui界面点击弹出对话框并请求逻辑生成分页的动态表格实例
May 12 Python
Pyinstaller 打包发布经验总结
Jun 02 Python
python交互模式基础知识点学习
Jun 18 Python
Python logging模块异步线程写日志实现过程解析
Jun 30 Python
python SOCKET编程基础入门
Feb 27 Python
python中sqllite插入numpy数组到数据库的实现方法
Jun 21 Python
Python使用socket_TCP实现小文件下载功能
Oct 09 #Python
python实现逻辑回归的示例
Oct 09 #Python
Django生成数据库及添加用户报错解决方案
Oct 09 #Python
pip已经安装好第三方库但pycharm中import时还是标红的解决方案
Oct 09 #Python
python实现数据结构中双向循环链表操作的示例
Oct 09 #Python
Python collections模块的使用方法
Oct 09 #Python
python爬取代理IP并进行有效的IP测试实现
Oct 09 #Python
You might like
php xml常用函数的集合(比较详细)
2013/06/06 PHP
php记录代码执行时间(实现代码)
2013/07/05 PHP
JS 非图片动态loading效果实现代码
2010/04/09 Javascript
网站如何做到完全不需要jQuery也可以满足简单需求
2013/06/27 Javascript
JQuery中使用ajax传输超大数据的解决方法
2014/07/14 Javascript
省市区三级联动下拉框菜单javascript版
2015/08/11 Javascript
jQuery同步提交示例代码
2015/12/12 Javascript
分享javascript实现的冒泡排序代码并优化
2016/06/05 Javascript
javascript基础知识讲解
2017/01/11 Javascript
为Jquery EasyUI 组件加上清除功能的方法(详解)
2017/04/13 jQuery
jquery中each循环的简单回滚操作
2017/05/05 jQuery
Node.js环境下Koa2添加travis ci持续集成工具的方法
2017/06/19 Javascript
vue.js配合$.post从后台获取数据简单demo分享
2018/08/11 Javascript
Vue中对拿到的数据进行A-Z排序的实例
2018/09/25 Javascript
JS判断用户用的哪个浏览器实例详解
2018/10/09 Javascript
JS+CSS3实现的简易钟表效果示例
2019/04/13 Javascript
angular多语言配置详解
2019/05/16 Javascript
jquery制作的移动端购物车效果完整示例
2020/02/24 jQuery
如何基于filter实现网站整体变灰功能
2020/04/17 Javascript
JavaScript实现与web通信的方法详解
2020/08/07 Javascript
[58:11]守擂赛第二周擂主赛 DeMonsTer vs Leopard
2020/04/28 DOTA
python在Windows下安装setuptools(easy_install工具)步骤详解
2016/07/01 Python
python扫描proxy并获取可用代理ip的实例
2017/08/07 Python
python实现二分查找算法
2017/09/21 Python
详解python算法之冒泡排序
2019/03/05 Python
关于python中的xpath解析定位
2020/03/06 Python
Python制作运行进度条的实现效果(代码运行不无聊)
2021/02/24 Python
一款简洁的纯css3代码实现的动画导航
2014/10/31 HTML / CSS
Canvas globalCompositeOperation
2018/12/18 HTML / CSS
程序员机试试题汇总
2012/03/07 面试题
幼儿园教师请假制度
2014/01/16 职场文书
十八届三中全会感言
2014/03/10 职场文书
危爆物品安全大检查大整治工作方案
2014/05/03 职场文书
2014年初一班主任工作总结
2014/11/08 职场文书
教师节获奖感言
2015/07/31 职场文书
处理canvas绘制图片模糊问题
2022/05/11 Javascript