Python collections模块的使用方法


Posted in Python onOctober 09, 2020

collections模块

这个模块实现了特定目标的容器,以提供Python标准内建容器 dict、list、set、tuple 的替代选择。

  • Counter:字典的子类,提供了可哈希对象的计数功能
  • defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认值
  • OrderedDict:字典的子类,保留了他们被添加的顺序
  • namedtuple:创建命名元组子类的工厂函数
  • deque:类似列表容器,实现了在两端快速添加(append)和弹出(pop)
  • ChainMap:类似字典的容器类,将多个映射集合到一个视图里面

Counter

Counter是一个dict子类,主要是用来对你访问的对象的频率进行计数。

>>> import collections
>>> # 统计字符出现的次数
... collections.Counter('hello world')
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})
>>> # 统计单词个数
... collections.Counter('hello world hello lucy'.split())
Counter({'hello': 2, 'world': 1, 'lucy': 1})

常用方法:

  • elements():返回一个迭代器,每个元素重复计算的个数,如果一个元素的计数小于1,就会被忽略
  • most_common([n]):返回一个列表,提供n个访问频率最高的元素和计数
  • subtract([iterable-or-mapping]):从迭代对象中减去元素,输入输出可以是0或者负数
  • update([iterable-or-mapping]):从迭代对象计数元素或者从另一个 映射对象 (或计数器) 添加
>>> c = collections.Counter('hello world hello lucy'.split())
>>> c
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 获取指定对象的访问次数,也可以使用get方法
... c['hello']
2
>>> # 查看元素
... list(c.elements())
['hello', 'hello', 'world', 'lucy']
>>> c1 = collections.Counter('hello world'.split())
>>> c2 = collections.Counter('hello lucy'.split())
>>> c1
Counter({'hello': 1, 'world': 1})
>>> c2
Counter({'hello': 1, 'lucy': 1})
>>> # 追加对象,+或者c1.update(c2)
... c1+c2
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 减少对象,-或者c1.subtract(c2)
... c1-c2
Counter({'world': 1})
>>> # 清除
... c.clear()
>>> c
Counter()

defaultdict

返回一个新的类似字典的对象。 defaultdict 是内置 dict 类的子类。

class collections.defaultdict([default_factory[, ...]])
>>> d = collections.defaultdict()
>>> d
defaultdict(None, {})
>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})

例子

defaultdict的一个典型用法是使用其中一种内置类型(如str、int、list或dict等)作为默认工厂,这些内置类型在没有参数调用时返回空类型。

>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})
>>> e['hello']
''
>>> e
defaultdict(<class 'str'>, {'hello': ''})
>>> # 普通字典调用不存在的键时,报错
... e1 = {}
>>> e1['hello']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'hello'

使用 int 作为 default_factory

>>> fruit = collections.defaultdict(int)
>>> fruit['apple'] = 2
>>> fruit
defaultdict(<class 'int'>, {'apple': 2})
>>> fruit['banana'] # 没有对象时,返回0
0
>>> fruit
defaultdict(<class 'int'>, {'apple': 2, 'banana': 0})

使用 list 作为 default_factory

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = collections.defaultdict(list)
>>> for k,v in s:
...   d[k].append(v)
...
>>> d
defaultdict(<class 'list'>, {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})
>>> d.items()
dict_items([('yellow', [1, 3]), ('blue', [2, 4]), ('red', [1])])
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

使用 dict 作为 default_factory

>>> nums = collections.defaultdict(dict)
>>> nums[1] = {'one':1}
>>> nums
defaultdict(<class 'dict'>, {1: {'one': 1}})
>>> nums[2]
{}
>>> nums
defaultdict(<class 'dict'>, {1: {'one': 1}, 2: {}})

使用 set 作为 default_factory

>>> types = collections.defaultdict(set)
>>> types['手机'].add('华为')
>>> types['手机'].add('小米')
>>> types['显示器'].add('AOC')
>>> types
defaultdict(<class 'set'>, {'手机': {'华为', '小米'}, '显示器': {'AOC'}})

 OrderedDict

Python字典中的键的顺序是任意的,它们不受添加的顺序的控制。

collections.OrderedDict 类提供了保留他们添加顺序的字典对象
>>> o = collections.OrderedDict()
>>> o['k1'] = 'v1'
>>> o['k3'] = 'v3'
>>> o['k2'] = 'v2'
>>> o
OrderedDict([('k1', 'v1'), ('k3', 'v3'), ('k2', 'v2')])

如果在已经存在的 key 上添加新的值,将会保留原来的 key 的位置,然后覆盖 value 值。

>>> o['k1'] = 666
>>> o
OrderedDict([('k1', 666), ('k3', 'v3'), ('k2', 'v2')])
>>> dict(o)
{'k1': 666, 'k3': 'v3', 'k2': 'v2'}

namedtuple

三种定义命名元组的方法:第一个参数是命名元组的构造器(如下的:Person1,Person2,Person3)

>>> P1 = collections.namedtuple('Person1',['name','age','height'])
>>> P2 = collections.namedtuple('Person2','name,age,height')
>>> P3 = collections.namedtuple('Person3','name age height')

实例化命名元组

>>> lucy = P1('lucy',23,180)
>>> lucy
Person1(name='lucy', age=23, height=180)
>>> jack = P2('jack',20,190)
>>> jack
Person2(name='jack', age=20, height=190)
>>> lucy.name # 直接通过 实例名.属性 来调用
'lucy'
>>> lucy.age
23

deque

collections.deque 返回一个新的双向队列对象,从左到右初始化(用方法 append()),从 iterable(迭代对象)数据创建。如果 iterable 没有指定,新队列为空。
collections.deque 队列支持线程安全,对于从两端添加(append)或者弹出(pop),复杂度O(1)。
 虽然 list 对象也支持类似操作,但是这里优化了定长操作(pop(0)、insert(0,v))的开销。
 如果 maxlen 没有指定或者是 None ,deque 可以增长到任意长度。否则,deque 就限定到指定最大长度。一旦限定长度的 deque 满了,当新项加入时,同样数量的项就从另一端弹出。

支持的方法:

  • append(x):添加x到右端
  • appendleft(x):添加x到左端
  • clear():清除所有元素,长度变为0
  • copy():创建一份浅拷贝
  • count(x):计算队列中个数等于x的元素
  • extend(iterable):在队列右侧添加iterable中的元素
  • extendleft(iterable):在队列左侧添加iterable中的元素,注:在左侧添加时,iterable参数的顺序将会反过来添加
  • index(x[,start[,stop]]):返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,升起 ValueError 。
  • insert(i,x):在位置 i 插入 x 。注:如果插入会导致一个限长deque超出长度 maxlen 的话,就升起一个 IndexError 。
  • pop():移除最右侧的元素
  • popleft():移除最左侧的元素
  • remove(value):移去找到的第一个 value。没有抛出ValueError
  • reverse():将deque逆序排列。返回 None 。
  • maxlen:队列的最大长度,没有限定则为None。
>>> d = collections.deque(maxlen=10)
>>> d
deque([], maxlen=10)
>>> d.extend('python')
>>> [i.upper() for i in d]
['P', 'Y', 'T', 'H', 'O', 'N']
>>> d.append('e')
>>> d.appendleft('f')
>>> d.appendleft('g')
>>> d.appendleft('h')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'e'], maxlen=10)
>>> d.appendleft('i')
>>> d
deque(['i', 'h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n'], maxlen=10)
>>> d.append('m')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'm'], maxlen=10)

ChainMap

问题背景是我们有多个字典或者映射,想把它们合并成为一个单独的映射,有人说可以用update进行合并,这样做的问题就是新建了一个数据结构以致于当我们对原来的字典进行更改的时候不会同步。如果想建立一个同步的查询方法,可以使用 ChainMap

可以用来合并两个或者更多个字典,当查询的时候,从前往后依次查询。简单使用:

>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> combined1 = collections.ChainMap(d1,d2)
>>> combined2 = collections.ChainMap(d2,d1)
>>> combined1
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> combined2
ChainMap({'orange': 2, 'apple': 3, 'pike': 1}, {'apple': 1, 'banana': 2})
>>> for k,v in combined1.items():
...   print(k,v)
...
orange 2
apple 1
pike 1
banana 2
>>> for k,v in combined2.items():
...   print(k,v)
...
apple 3
banana 2
orange 2
pike 1

有一个注意点就是当对ChainMap进行修改的时候总是只会对第一个字典进行修改,如果第一个字典不存在该键,会添加。

>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> c = collections.ChainMap(d1,d2)
>>> c
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['apple']
1
>>> c['apple'] = 2
>>> c
ChainMap({'apple': 2, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['pike']
1
>>> c['pike'] = 3
>>> c
ChainMap({'apple': 2, 'banana': 2, 'pike': 3}, {'orange': 2, 'apple': 3, 'pike': 1})

从原理上面讲,ChainMap 实际上是把放入的字典存储在一个队列中,当进行字典的增加删除等操作只会在第一个字典上进行,当进行查找的时候会依次查找,new_child() 方法实质上是在列表的第一个元素前放入一个字典,默认是{},而 parents 是去掉了列表开头的元素

>>> a = collections.ChainMap()
>>> a['x'] = 1
>>> a
ChainMap({'x': 1})
>>> b = a.new_child()
>>> b
ChainMap({}, {'x': 1})
>>> b['x'] = 2
>>> b
ChainMap({'x': 2}, {'x': 1})
>>> b['y'] = 3
>>> b
ChainMap({'x': 2, 'y': 3}, {'x': 1})
>>> a
ChainMap({'x': 1})
>>> c = a.new_child()
>>> c
ChainMap({}, {'x': 1})
>>> c['x'] = 1
>>> c['y'] = 1
>>> c
ChainMap({'x': 1, 'y': 1}, {'x': 1})
>>> d = c.parents
>>> d
ChainMap({'x': 1})
>>> d is a
False
>>> d == a
True
>>> a = {'x':1,'z':3}
>>> b = {'y':2,'z':4}
>>> c = collections.ChainMap(a,b)
>>> c
ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4})
>>> c.maps
[{'x': 1, 'z': 3}, {'y': 2, 'z': 4}]
>>> c.parents
ChainMap({'y': 2, 'z': 4})
>>> c.parents.maps
[{'y': 2, 'z': 4}]
>>> c.parents.parents
ChainMap({})
>>> c.parents.parents.parents
ChainMap({})

到此这篇关于Python collections模块的使用方法的文章就介绍到这了,更多相关Python collections模块内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木! 

Python 相关文章推荐
Cython 三分钟入门教程
Sep 17 Python
Python PyAutoGUI模块控制鼠标和键盘实现自动化任务详解
Sep 04 Python
对python csv模块配置分隔符和引用符详解
Dec 12 Python
对Python正则匹配IP、Url、Mail的方法详解
Dec 25 Python
Python中的集合介绍
Jan 28 Python
Python 把序列转换为元组的函数tuple方法
Jun 27 Python
Python循环结构的应用场景详解
Jul 11 Python
Python时间序列缺失值的处理方法(日期缺失填充)
Aug 11 Python
python递归下载文件夹下所有文件
Aug 31 Python
使用Keras加载含有自定义层或函数的模型操作
Jun 10 Python
Python enumerate() 函数如何实现索引功能
Jun 29 Python
python如何编写类似nmap的扫描工具
Nov 06 Python
python爬取代理IP并进行有效的IP测试实现
Oct 09 #Python
Python中Selenium模块的使用详解
Oct 09 #Python
python利用platform模块获取系统信息
Oct 09 #Python
python smtplib发送多个email联系人的实现
Oct 09 #Python
python 决策树算法的实现
Oct 09 #Python
Python+unittest+requests 接口自动化测试框架搭建教程
Oct 09 #Python
Python实现http接口自动化测试的示例代码
Oct 09 #Python
You might like
PHP判断一个gif图片是否为动态图片的方法
2014/11/19 PHP
thinkphp模板赋值与替换实例简述
2014/11/24 PHP
php设置页面超时时间解决方法
2015/09/22 PHP
基于jquery的拖动布局插件
2011/11/25 Javascript
select标签模拟/美化方法采用JS外挂式插件
2013/04/01 Javascript
Js动态添加复选框Checkbox的实例方法
2013/04/08 Javascript
jQuery实现新消息闪烁标题提示的方法
2015/03/11 Javascript
JavaScript给input的value赋值引发的关于基本类型值和引用类型值问题
2015/12/07 Javascript
bootstrap基础知识学习笔记
2016/11/02 Javascript
分析JavaScript数组操作难点
2017/12/18 Javascript
使用axios实现上传图片进度条功能
2017/12/21 Javascript
如何使用VuePress搭建一个类型element ui文档
2019/02/14 Javascript
vant IndexBar实现的城市列表的示例代码
2019/11/20 Javascript
python实现清屏的方法
2015/04/30 Python
python简单实现基于SSL的IRC bot实例
2015/06/15 Python
Python(Django)项目与Apache的管理交互的方法
2018/05/16 Python
python读取xlsx的方法
2018/12/25 Python
面向对象学习之pygame坦克大战
2019/09/11 Python
Python利用全连接神经网络求解MNIST问题详解
2020/01/14 Python
python线性插值解析
2020/07/05 Python
python反编译教程之2048小游戏实例
2021/03/03 Python
CSS3图片旋转特效(360/60/-360度)
2013/10/10 HTML / CSS
纯CSS3绘制打火机动画火焰效果
2016/07/18 HTML / CSS
html5的localstorage详解
2017/05/09 HTML / CSS
澳大利亚自然和有机的健康美容产品一站式商店:Ziani Beauty
2017/12/28 全球购物
JSF如何进行表格处理及取值
2012/08/06 面试题
应届生个人求职信模板
2013/11/26 职场文书
初中数学教学反思
2014/01/16 职场文书
学校七一活动方案
2014/01/19 职场文书
会计专业自我评价
2014/02/12 职场文书
市场营销求职信范文
2014/02/21 职场文书
项目投资建议书
2014/05/16 职场文书
2014房屋登记授权委托书
2014/10/13 职场文书
SQLServer2019 数据库的基本使用之图形化界面操作的实现
2021/04/08 SQL Server
用Python创建简易网站图文教程
2021/06/11 Python
SpringBoot工程下使用OpenFeign的坑及解决
2021/07/02 Java/Android