关于win10在tensorflow的安装及在pycharm中运行步骤详解


Posted in Python onMarch 16, 2020

本文介绍在win10中安装tensorflow的步骤:

1、安装anaconda3

2、新建conda环境变量,可建多个环境在内部安装多个tensorflow版本,1.x和2.x版本功能差别太大,代码也很大区别

3、环境中安装python和fensorflow

4、用tensorflow运行一段测试程序

安装anaconda下载地址(清华镜像):

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/选择最新版本

关于win10在tensorflow的安装及在pycharm中运行步骤详解

开始安装anaconda

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

选择安装位置

关于win10在tensorflow的安装及在pycharm中运行步骤详解

勾选后,点击 install

关于win10在tensorflow的安装及在pycharm中运行步骤详解

等待一段时间

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装完成,直接退出

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装好anaconda以后,打开cmd输入conda --version” ----->得到conda 4.7.12,安装成功

关于win10在tensorflow的安装及在pycharm中运行步骤详解

anaconda3就安装好了

开始安装tensorflow

国外原地址下载太慢,这里设置国内镜像源,否则特别慢。。。。:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

 

conda config --set show_channel_urls yes

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们先安装tensorflow2.0版本创建新的环境tensorflow2,输入: conda create -n tensorflow2 python=3.7

关于win10在tensorflow的安装及在pycharm中运行步骤详解

输入 y

开始自动下载文件(可以看到下载的Python版本为3.7.6版本,文件目录在E:\anaconda3\envs中,后面配置时会用到),

关于win10在tensorflow的安装及在pycharm中运行步骤详解

激活刚才创建的环境,输入 : activate tensorflow2

关于win10在tensorflow的安装及在pycharm中运行步骤详解

然后就开始安装TensorFlow,输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==2.0.0-beta1

关于win10在tensorflow的安装及在pycharm中运行步骤详解

接下来自动安装好了,出现下面提示就安装好了,哈哈!

关于win10在tensorflow的安装及在pycharm中运行步骤详解

python的版本不一样,运行环境也不一样,如果还要安装1.x版本,(这里安装tensorflow1.9.0版本),再次进入cmd中

创建新的1.x版本环境

输入 :conda create -n tensorflow1 python=3.6 激活新环境

输入 : activate tensorflow1 安装TensorFlow

输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.9.0

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装过程中,如需pip9.0.1升级pip20:

输入 python -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple

运行tensorflow

既然fensorflow安装好了,我现在用pycharm打开运行一段代码,首先配置pycharm

关于win10在tensorflow的安装及在pycharm中运行步骤详解

打开设置?项目?项目编辑器?点击Add

关于win10在tensorflow的安装及在pycharm中运行步骤详解

按下面步骤,设置环境就ok了

关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们设置一个新环境,将环境再改为刚安装好的tensorflow1.9.0的版本,测试运行一个小程序。

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 19 19:33:03 2018
@author: KUMA
"""
import numpy as np
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class LinearSep:
 def __init__(self):
 self.n_train = 10
 self.n_test = 50
 self.x_train, self.y_train, self.x_test, self.y_test = self._gene_data()
 def _gene_data(self):
 x = np.random.uniform(-1, 1, [self.n_train, 2])
 y = (x[:, 1] > x[:, 0]).astype(np.int32)
 x += np.random.randn(self.n_train, 2) * 0.05
 x_test = np.random.uniform(-1, 1, [self.n_test, 2])
 y_test = (x_test[:, 1] > x_test[:, 0]).astype(np.int32)
 return x, y, x_test, y_test
# 随机生成数据
dataset = LinearSep()
X_train, Y_train = dataset.x_train, dataset.y_train
print(Y_train)
Y_train = np.eye(2)[Y_train]
X_test, Y_test = dataset.x_test, dataset.y_test
Y_test = np.eye(2)[Y_test]
x = tf.placeholder(tf.float32, [None, 2], name='input')
y = tf.placeholder(tf.float32, [None, 2], name='output')
w1 = tf.get_variable(name='w_fc1', shape=[2, 20], dtype=tf.float32)
b1 = tf.get_variable(name='b_fc1', shape=[20], dtype=tf.float32)
out = tf.matmul(x, w1) + b1
out = tf.nn.relu(out)
w2 = tf.get_variable(name='w_fc2', shape=[20, 2], dtype=tf.float32)
b2 = tf.get_variable(name='b_fc2', shape=[2], dtype=tf.float32)
out = tf.matmul(out, w2) + b2
out = tf.nn.softmax(out)
# cross entropy 损失函数
loss = -tf.reduce_mean(tf.reduce_sum(y * tf.log(out + 1e-8), axis=1), axis=0)
# 准确率
correct_pred = tf.equal(tf.argmax(y, axis=1), tf.argmax(out, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 定义优化器
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) # 1e-3 是学习律
# 初始化网络
# BATCH_SIZE = 128
EPOCH = 7000 # 优化次数
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for ep in range(EPOCH):
 sess.run(train_op, feed_dict={x: X_train, y: Y_train})
 loss_train, acc_train = sess.run([loss, accuracy], feed_dict={x: X_train, y: Y_train})
 acc_test, pre_test = sess.run([accuracy, correct_pred], feed_dict={x: X_test, y: Y_test})
 if ep % 1000 == 0:
 print(ep, loss_train, acc_train, acc_test)
 print(Y_test.shape)
test_pre = sess.run(out, feed_dict={x: X_test, y: Y_test})
print(len(test_pre))
mask = np.argmax(test_pre, axis=1)
print(mask)
mask_0 = np.where(mask == 0)
mask_1 = np.where(mask == 1)
X_0 = X_train[mask_0]
X_1 = X_train[mask_1]
print(X_0)

结果如下:

`[1 0 1 0 1 1 1 0 1 1] T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

0 0.81077516 0.1 0.34 (50, 2) 1000 0.013808459 1.0 0.82 (50, 2) 2000 0.0025899492 1.0 0.82 (50, 2) 3000 0.00088921207 1.0 0.82 (50, 2) 4000 0.00038405406 1.0 0.82 (50, 2) 5000 0.0001859894 1.0 0.82 (50, 2) 6000 8.420033e-05 1.0 0.82 (50, 2) 50 [0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1]`

其中出现 Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 这个没问题,可以忽略,能正常运行出结果。

总结

到此这篇关于关于win10在tensorflow的安装及在pycharm中运行步骤详解的文章就介绍到这了,更多相关tensorflow安装pycharm运行内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
轻松掌握python设计模式之策略模式
Nov 18 Python
python链接oracle数据库以及数据库的增删改查实例
Jan 30 Python
Django中使用第三方登录的示例代码
Aug 20 Python
解决新django中的path不能使用正则表达式的问题
Dec 18 Python
用Python中的turtle模块画图两只小羊方法
Apr 09 Python
Python3 串口接收与发送16进制数据包的实例
Jun 12 Python
在pyqt5中QLineEdit里面的内容回车发送的实例
Jun 21 Python
Python 如何提高元组的可读性
Aug 26 Python
详解如何在cmd命令窗口中搭建简单的python开发环境
Aug 29 Python
python基于gevent实现并发下载器代码实例
Nov 01 Python
python接口自动化框架实战
Dec 23 Python
Python pygame实现中国象棋单机版源码
Jun 20 Python
Python3.6 中的pyinstaller安装和使用教程
Mar 16 #Python
python pandas利用fillna方法实现部分自动填充功能
Mar 16 #Python
Python Flask上下文管理机制实例解析
Mar 16 #Python
Python threading.local代码实例及原理解析
Mar 16 #Python
python实现ssh及sftp功能(实例代码)
Mar 16 #Python
借助Paramiko通过Python实现linux远程登陆及sftp的操作
Mar 16 #Python
Django ValuesQuerySet转json方式
Mar 16 #Python
You might like
深入eAccelerator与memcached的区别详解
2013/06/06 PHP
joomla jce editor 解决上传中文名文件失败问题
2013/06/09 PHP
初识php MVC
2014/09/10 PHP
3款值得推荐的微信开发开源框架
2014/10/28 PHP
php常见的魔术方法详解
2014/12/25 PHP
php中strlen和mb_strlen用法实例分析
2016/11/12 PHP
php之可变变量的实例详解
2017/09/12 PHP
深入分析PHP设计模式
2020/06/15 PHP
Nigma vs Liquid BO3 第二场2.14
2021/03/10 DOTA
推荐一些非常不错的javascript学习资源站点
2007/08/29 Javascript
24款非常有用的 jQuery 插件分享
2011/04/06 Javascript
ie浏览器使用js导出网页到excel并打印
2014/03/11 Javascript
基于jQuery实现的单行公告活动轮播效果
2017/08/23 jQuery
Bootstrap Table 删除和批量删除
2017/09/22 Javascript
jQuery实现文件编码成base64并通过AJAX上传的方法
2018/04/12 jQuery
JS实现盒子跟着鼠标移动及键盘方向键控制盒子移动效果示例
2019/01/29 Javascript
js JSON.stringify()基础详解
2019/06/19 Javascript
JS中getElementsByClassName与classList兼容性问题解决方案分析
2019/08/07 Javascript
Vue中跨域及打包部署到nginx跨域设置方法
2019/08/26 Javascript
nuxt踩坑之Vuex状态树的模块方式使用详解
2019/09/06 Javascript
ES6实现图片切换特效代码
2020/01/14 Javascript
ES6函数实现排它两种写法解析
2020/05/13 Javascript
Vue实现背景更换颜色操作
2020/07/17 Javascript
python使用webbrowser浏览指定url的方法
2015/04/04 Python
基于Django URL传参 FORM表单传数据 get post的用法实例
2018/05/28 Python
Flask和Django框架中自定义模型类的表名、父类相关问题分析
2018/07/19 Python
Python中单线程、多线程和多进程的效率对比实验实例
2019/05/14 Python
浅析python内置模块collections
2019/11/15 Python
python实现马丁策略的实例详解
2021/01/15 Python
Moda Operandi官网:美国奢侈品电商,海淘秀场T台同款
2020/05/26 全球购物
党员志愿者活动方案
2014/08/28 职场文书
selenium.webdriver中add_argument方法常用参数表
2021/04/08 Python
HTML页面滚动时部分内容位置固定不滚动的实现
2021/04/14 HTML / CSS
pandas DataFrame.shift()函数的具体使用
2021/05/24 Python
MySQL Server层四个日志的实现
2022/03/31 MySQL
Win11使用CAD卡顿或者致命错误怎么办?Win11无法正常使用CAD的解决方法
2022/07/23 数码科技