关于win10在tensorflow的安装及在pycharm中运行步骤详解


Posted in Python onMarch 16, 2020

本文介绍在win10中安装tensorflow的步骤:

1、安装anaconda3

2、新建conda环境变量,可建多个环境在内部安装多个tensorflow版本,1.x和2.x版本功能差别太大,代码也很大区别

3、环境中安装python和fensorflow

4、用tensorflow运行一段测试程序

安装anaconda下载地址(清华镜像):

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/选择最新版本

关于win10在tensorflow的安装及在pycharm中运行步骤详解

开始安装anaconda

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

选择安装位置

关于win10在tensorflow的安装及在pycharm中运行步骤详解

勾选后,点击 install

关于win10在tensorflow的安装及在pycharm中运行步骤详解

等待一段时间

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装完成,直接退出

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装好anaconda以后,打开cmd输入conda --version” ----->得到conda 4.7.12,安装成功

关于win10在tensorflow的安装及在pycharm中运行步骤详解

anaconda3就安装好了

开始安装tensorflow

国外原地址下载太慢,这里设置国内镜像源,否则特别慢。。。。:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

 

conda config --set show_channel_urls yes

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们先安装tensorflow2.0版本创建新的环境tensorflow2,输入: conda create -n tensorflow2 python=3.7

关于win10在tensorflow的安装及在pycharm中运行步骤详解

输入 y

开始自动下载文件(可以看到下载的Python版本为3.7.6版本,文件目录在E:\anaconda3\envs中,后面配置时会用到),

关于win10在tensorflow的安装及在pycharm中运行步骤详解

激活刚才创建的环境,输入 : activate tensorflow2

关于win10在tensorflow的安装及在pycharm中运行步骤详解

然后就开始安装TensorFlow,输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==2.0.0-beta1

关于win10在tensorflow的安装及在pycharm中运行步骤详解

接下来自动安装好了,出现下面提示就安装好了,哈哈!

关于win10在tensorflow的安装及在pycharm中运行步骤详解

python的版本不一样,运行环境也不一样,如果还要安装1.x版本,(这里安装tensorflow1.9.0版本),再次进入cmd中

创建新的1.x版本环境

输入 :conda create -n tensorflow1 python=3.6 激活新环境

输入 : activate tensorflow1 安装TensorFlow

输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.9.0

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装过程中,如需pip9.0.1升级pip20:

输入 python -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple

运行tensorflow

既然fensorflow安装好了,我现在用pycharm打开运行一段代码,首先配置pycharm

关于win10在tensorflow的安装及在pycharm中运行步骤详解

打开设置?项目?项目编辑器?点击Add

关于win10在tensorflow的安装及在pycharm中运行步骤详解

按下面步骤,设置环境就ok了

关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们设置一个新环境,将环境再改为刚安装好的tensorflow1.9.0的版本,测试运行一个小程序。

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 19 19:33:03 2018
@author: KUMA
"""
import numpy as np
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class LinearSep:
 def __init__(self):
 self.n_train = 10
 self.n_test = 50
 self.x_train, self.y_train, self.x_test, self.y_test = self._gene_data()
 def _gene_data(self):
 x = np.random.uniform(-1, 1, [self.n_train, 2])
 y = (x[:, 1] > x[:, 0]).astype(np.int32)
 x += np.random.randn(self.n_train, 2) * 0.05
 x_test = np.random.uniform(-1, 1, [self.n_test, 2])
 y_test = (x_test[:, 1] > x_test[:, 0]).astype(np.int32)
 return x, y, x_test, y_test
# 随机生成数据
dataset = LinearSep()
X_train, Y_train = dataset.x_train, dataset.y_train
print(Y_train)
Y_train = np.eye(2)[Y_train]
X_test, Y_test = dataset.x_test, dataset.y_test
Y_test = np.eye(2)[Y_test]
x = tf.placeholder(tf.float32, [None, 2], name='input')
y = tf.placeholder(tf.float32, [None, 2], name='output')
w1 = tf.get_variable(name='w_fc1', shape=[2, 20], dtype=tf.float32)
b1 = tf.get_variable(name='b_fc1', shape=[20], dtype=tf.float32)
out = tf.matmul(x, w1) + b1
out = tf.nn.relu(out)
w2 = tf.get_variable(name='w_fc2', shape=[20, 2], dtype=tf.float32)
b2 = tf.get_variable(name='b_fc2', shape=[2], dtype=tf.float32)
out = tf.matmul(out, w2) + b2
out = tf.nn.softmax(out)
# cross entropy 损失函数
loss = -tf.reduce_mean(tf.reduce_sum(y * tf.log(out + 1e-8), axis=1), axis=0)
# 准确率
correct_pred = tf.equal(tf.argmax(y, axis=1), tf.argmax(out, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 定义优化器
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) # 1e-3 是学习律
# 初始化网络
# BATCH_SIZE = 128
EPOCH = 7000 # 优化次数
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for ep in range(EPOCH):
 sess.run(train_op, feed_dict={x: X_train, y: Y_train})
 loss_train, acc_train = sess.run([loss, accuracy], feed_dict={x: X_train, y: Y_train})
 acc_test, pre_test = sess.run([accuracy, correct_pred], feed_dict={x: X_test, y: Y_test})
 if ep % 1000 == 0:
 print(ep, loss_train, acc_train, acc_test)
 print(Y_test.shape)
test_pre = sess.run(out, feed_dict={x: X_test, y: Y_test})
print(len(test_pre))
mask = np.argmax(test_pre, axis=1)
print(mask)
mask_0 = np.where(mask == 0)
mask_1 = np.where(mask == 1)
X_0 = X_train[mask_0]
X_1 = X_train[mask_1]
print(X_0)

结果如下:

`[1 0 1 0 1 1 1 0 1 1] T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

0 0.81077516 0.1 0.34 (50, 2) 1000 0.013808459 1.0 0.82 (50, 2) 2000 0.0025899492 1.0 0.82 (50, 2) 3000 0.00088921207 1.0 0.82 (50, 2) 4000 0.00038405406 1.0 0.82 (50, 2) 5000 0.0001859894 1.0 0.82 (50, 2) 6000 8.420033e-05 1.0 0.82 (50, 2) 50 [0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1]`

其中出现 Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 这个没问题,可以忽略,能正常运行出结果。

总结

到此这篇关于关于win10在tensorflow的安装及在pycharm中运行步骤详解的文章就介绍到这了,更多相关tensorflow安装pycharm运行内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
零基础写python爬虫之使用urllib2组件抓取网页内容
Nov 04 Python
Python 2.x如何设置命令执行的超时时间实例
Oct 19 Python
Python栈算法的实现与简单应用示例
Nov 01 Python
python爬虫获取多页天涯帖子
Feb 23 Python
python对文件目录的操作方法实例总结
Jun 24 Python
Python Django实现layui风格+django分页功能的例子
Aug 29 Python
python 穷举指定长度的密码例子
Apr 02 Python
Pytorch 使用不同版本的cuda的方法步骤
Apr 02 Python
python matplotlib.pyplot.plot()参数用法
Apr 14 Python
Python scrapy爬取小说代码案例详解
Jul 09 Python
python中np是做什么的
Jul 21 Python
Python3以GitHub为例来实现模拟登录和爬取的实例讲解
Jul 30 Python
Python3.6 中的pyinstaller安装和使用教程
Mar 16 #Python
python pandas利用fillna方法实现部分自动填充功能
Mar 16 #Python
Python Flask上下文管理机制实例解析
Mar 16 #Python
Python threading.local代码实例及原理解析
Mar 16 #Python
python实现ssh及sftp功能(实例代码)
Mar 16 #Python
借助Paramiko通过Python实现linux远程登陆及sftp的操作
Mar 16 #Python
Django ValuesQuerySet转json方式
Mar 16 #Python
You might like
令PHP初学者头疼十四条问题大总结
2008/11/12 PHP
PHP微信分享开发详解
2017/01/14 PHP
Yii框架实现记录日志到自定义文件的方法
2017/05/23 PHP
js apply/call/caller/callee/bind使用方法与区别分析
2009/10/28 Javascript
js读取本地excel文档数据的代码
2010/11/11 Javascript
JavaScript OOP面向对象介绍
2010/12/02 Javascript
在jQuery1.5中使用deferred对象 着放大镜看Promise
2011/03/12 Javascript
jquery异步请求实例代码
2011/06/21 Javascript
小结Node.js中非阻塞IO和事件循环
2014/09/18 Javascript
javascript格式化日期时间方法汇总
2015/06/19 Javascript
jQuery使用$.ajax进行即时验证的方法
2015/12/08 Javascript
JS根据浏览器窗口大小实时动态改变网页文字大小的方法
2016/02/25 Javascript
ES6概念 Symbol.keyFor()方法
2016/12/25 Javascript
codeMirror插件使用讲解
2017/01/16 Javascript
JQuery validate 验证一个单独的表单元素实例
2017/02/17 Javascript
使用node.js搭建服务器
2017/05/20 Javascript
bootstrap table实现x-editable的行单元格编辑及解决数据Empty和支持多样式问题
2017/08/10 Javascript
微信小程序实现的贪吃蛇游戏【附源码下载】
2018/01/03 Javascript
浅谈Javascript中的对象和继承
2019/04/19 Javascript
微信小程序页面间传值与页面取值操作实例分析
2019/04/30 Javascript
js图片无缝滚动插件使用详解
2020/05/26 Javascript
解决vue无法侦听数组及对象属性的变化问题
2020/07/17 Javascript
element-plus一个vue3.xUI框架(element-ui的3.x 版初体验)
2020/12/02 Vue.js
Python中Django发送带图片和附件的邮件
2017/03/31 Python
python实现redis三种cas事务操作
2017/12/19 Python
关于Python3 类方法、静态方法新解
2019/08/30 Python
详解Django将秒转换为xx天xx时xx分
2019/09/27 Python
微软香港官网及网上商店:Microsoft HK
2016/09/01 全球购物
艺术用品:Arteza
2018/11/25 全球购物
浙大网新C/C++面试解惑
2015/05/27 面试题
静态变量和实例变量的区别
2015/07/07 面试题
公司运动会策划方案
2014/05/25 职场文书
整顿机关作风心得体会
2014/09/10 职场文书
离职感谢信
2015/01/21 职场文书
用Python进行栅格数据的分区统计和批量提取
2021/05/27 Python
Win10系统下配置Java环境变量
2021/06/13 Java/Android