关于win10在tensorflow的安装及在pycharm中运行步骤详解


Posted in Python onMarch 16, 2020

本文介绍在win10中安装tensorflow的步骤:

1、安装anaconda3

2、新建conda环境变量,可建多个环境在内部安装多个tensorflow版本,1.x和2.x版本功能差别太大,代码也很大区别

3、环境中安装python和fensorflow

4、用tensorflow运行一段测试程序

安装anaconda下载地址(清华镜像):

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/选择最新版本

关于win10在tensorflow的安装及在pycharm中运行步骤详解

开始安装anaconda

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

选择安装位置

关于win10在tensorflow的安装及在pycharm中运行步骤详解

勾选后,点击 install

关于win10在tensorflow的安装及在pycharm中运行步骤详解

等待一段时间

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装完成,直接退出

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装好anaconda以后,打开cmd输入conda --version” ----->得到conda 4.7.12,安装成功

关于win10在tensorflow的安装及在pycharm中运行步骤详解

anaconda3就安装好了

开始安装tensorflow

国外原地址下载太慢,这里设置国内镜像源,否则特别慢。。。。:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

 

conda config --set show_channel_urls yes

关于win10在tensorflow的安装及在pycharm中运行步骤详解关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们先安装tensorflow2.0版本创建新的环境tensorflow2,输入: conda create -n tensorflow2 python=3.7

关于win10在tensorflow的安装及在pycharm中运行步骤详解

输入 y

开始自动下载文件(可以看到下载的Python版本为3.7.6版本,文件目录在E:\anaconda3\envs中,后面配置时会用到),

关于win10在tensorflow的安装及在pycharm中运行步骤详解

激活刚才创建的环境,输入 : activate tensorflow2

关于win10在tensorflow的安装及在pycharm中运行步骤详解

然后就开始安装TensorFlow,输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==2.0.0-beta1

关于win10在tensorflow的安装及在pycharm中运行步骤详解

接下来自动安装好了,出现下面提示就安装好了,哈哈!

关于win10在tensorflow的安装及在pycharm中运行步骤详解

python的版本不一样,运行环境也不一样,如果还要安装1.x版本,(这里安装tensorflow1.9.0版本),再次进入cmd中

创建新的1.x版本环境

输入 :conda create -n tensorflow1 python=3.6 激活新环境

输入 : activate tensorflow1 安装TensorFlow

输入: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.9.0

关于win10在tensorflow的安装及在pycharm中运行步骤详解

安装过程中,如需pip9.0.1升级pip20:

输入 python -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple

运行tensorflow

既然fensorflow安装好了,我现在用pycharm打开运行一段代码,首先配置pycharm

关于win10在tensorflow的安装及在pycharm中运行步骤详解

打开设置?项目?项目编辑器?点击Add

关于win10在tensorflow的安装及在pycharm中运行步骤详解

按下面步骤,设置环境就ok了

关于win10在tensorflow的安装及在pycharm中运行步骤详解

我们设置一个新环境,将环境再改为刚安装好的tensorflow1.9.0的版本,测试运行一个小程序。

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 19 19:33:03 2018
@author: KUMA
"""
import numpy as np
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class LinearSep:
 def __init__(self):
 self.n_train = 10
 self.n_test = 50
 self.x_train, self.y_train, self.x_test, self.y_test = self._gene_data()
 def _gene_data(self):
 x = np.random.uniform(-1, 1, [self.n_train, 2])
 y = (x[:, 1] > x[:, 0]).astype(np.int32)
 x += np.random.randn(self.n_train, 2) * 0.05
 x_test = np.random.uniform(-1, 1, [self.n_test, 2])
 y_test = (x_test[:, 1] > x_test[:, 0]).astype(np.int32)
 return x, y, x_test, y_test
# 随机生成数据
dataset = LinearSep()
X_train, Y_train = dataset.x_train, dataset.y_train
print(Y_train)
Y_train = np.eye(2)[Y_train]
X_test, Y_test = dataset.x_test, dataset.y_test
Y_test = np.eye(2)[Y_test]
x = tf.placeholder(tf.float32, [None, 2], name='input')
y = tf.placeholder(tf.float32, [None, 2], name='output')
w1 = tf.get_variable(name='w_fc1', shape=[2, 20], dtype=tf.float32)
b1 = tf.get_variable(name='b_fc1', shape=[20], dtype=tf.float32)
out = tf.matmul(x, w1) + b1
out = tf.nn.relu(out)
w2 = tf.get_variable(name='w_fc2', shape=[20, 2], dtype=tf.float32)
b2 = tf.get_variable(name='b_fc2', shape=[2], dtype=tf.float32)
out = tf.matmul(out, w2) + b2
out = tf.nn.softmax(out)
# cross entropy 损失函数
loss = -tf.reduce_mean(tf.reduce_sum(y * tf.log(out + 1e-8), axis=1), axis=0)
# 准确率
correct_pred = tf.equal(tf.argmax(y, axis=1), tf.argmax(out, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 定义优化器
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) # 1e-3 是学习律
# 初始化网络
# BATCH_SIZE = 128
EPOCH = 7000 # 优化次数
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for ep in range(EPOCH):
 sess.run(train_op, feed_dict={x: X_train, y: Y_train})
 loss_train, acc_train = sess.run([loss, accuracy], feed_dict={x: X_train, y: Y_train})
 acc_test, pre_test = sess.run([accuracy, correct_pred], feed_dict={x: X_test, y: Y_test})
 if ep % 1000 == 0:
 print(ep, loss_train, acc_train, acc_test)
 print(Y_test.shape)
test_pre = sess.run(out, feed_dict={x: X_test, y: Y_test})
print(len(test_pre))
mask = np.argmax(test_pre, axis=1)
print(mask)
mask_0 = np.where(mask == 0)
mask_1 = np.where(mask == 1)
X_0 = X_train[mask_0]
X_1 = X_train[mask_1]
print(X_0)

结果如下:

`[1 0 1 0 1 1 1 0 1 1] T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

0 0.81077516 0.1 0.34 (50, 2) 1000 0.013808459 1.0 0.82 (50, 2) 2000 0.0025899492 1.0 0.82 (50, 2) 3000 0.00088921207 1.0 0.82 (50, 2) 4000 0.00038405406 1.0 0.82 (50, 2) 5000 0.0001859894 1.0 0.82 (50, 2) 6000 8.420033e-05 1.0 0.82 (50, 2) 50 [0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1]`

其中出现 Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 这个没问题,可以忽略,能正常运行出结果。

总结

到此这篇关于关于win10在tensorflow的安装及在pycharm中运行步骤详解的文章就介绍到这了,更多相关tensorflow安装pycharm运行内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 检查数组元素是否存在类似PHP isset()方法
Oct 14 Python
Python中使用HTMLParser解析html实例
Feb 08 Python
简单实现python爬虫功能
Dec 31 Python
详解Python的Flask框架中的signals信号机制
Jun 13 Python
Python如何为图片添加水印
Nov 25 Python
python里使用正则表达式的组嵌套实例详解
Oct 24 Python
pandas-resample按时间聚合实例
Dec 27 Python
Django ForeignKey与数据库的FOREIGN KEY约束详解
May 20 Python
如何在mac版pycharm选择python版本
Jul 21 Python
django使用graphql的实例
Sep 02 Python
python异常中else的实例用法
Jun 15 Python
Python学习之时间包使用教程详解
Mar 21 Python
Python3.6 中的pyinstaller安装和使用教程
Mar 16 #Python
python pandas利用fillna方法实现部分自动填充功能
Mar 16 #Python
Python Flask上下文管理机制实例解析
Mar 16 #Python
Python threading.local代码实例及原理解析
Mar 16 #Python
python实现ssh及sftp功能(实例代码)
Mar 16 #Python
借助Paramiko通过Python实现linux远程登陆及sftp的操作
Mar 16 #Python
Django ValuesQuerySet转json方式
Mar 16 #Python
You might like
PHP 如何向 MySQL 发送数据
2006/10/09 PHP
phplot生成图片类用法详解
2015/01/06 PHP
PHP学习笔记之php文件操作
2016/06/03 PHP
HTML页面如何象ASP一样接受参数
2007/02/07 Javascript
Jquery cookie操作代码
2010/03/14 Javascript
Jquery+ajax请求data显示在GridView上(asp.net)
2010/08/27 Javascript
jQuery/CSS3图片特效插件整理推荐
2014/12/07 Javascript
javascript中定义类的方法详解
2015/02/10 Javascript
Avalon中文长字符截取、关键字符隐藏、自定义过滤器
2016/05/18 Javascript
jQuery异步提交表单的两种方式
2016/09/13 Javascript
bootstrap表单按回车会自动刷新页面的解决办法
2017/03/08 Javascript
微信小程序 sha1 实现密码加密实例详解
2017/07/06 Javascript
AngularJS实现select的ng-options功能示例
2017/07/12 Javascript
JavaScript分步实现一个出生日期的正则表达式
2018/03/22 Javascript
Javascript获取某个月的天数
2018/05/30 Javascript
vue的过滤器filter实例详解
2018/09/17 Javascript
Angular ui-roter 和AngularJS 通过 ocLazyLoad 实现动态(懒)加载模块和依赖
2018/11/25 Javascript
Vue唯一可以更改vuex实例中state数据状态的属性对象Mutation的讲解
2019/01/18 Javascript
解决VUE双向绑定失效的问题
2019/10/29 Javascript
Vue中keep-alive的两种应用方式
2020/07/15 Javascript
[03:04]DOTA2英雄基础教程 影魔
2013/12/11 DOTA
Python之Web框架Django项目搭建全过程
2017/05/02 Python
5分钟 Pipenv 上手指南
2018/12/20 Python
使用python脚本自动创建pip.ini配置文件代码实例
2019/09/20 Python
Python龙贝格法求积分实例
2020/02/29 Python
英国领先的男士服装和时尚零售商:Burton
2017/01/09 全球购物
全球最大的在线旅游公司:Expedia
2017/11/16 全球购物
会计学财务管理专业个人的自我评价
2013/10/19 职场文书
初中家长寄语
2014/04/02 职场文书
环保建议书300字
2014/05/14 职场文书
社团活动总结报告
2014/06/27 职场文书
2014年护士个人工作总结
2014/11/11 职场文书
演讲稿之开卷有益
2019/08/07 职场文书
为什么不建议在go项目中使用init()
2021/04/12 Golang
通过Qt连接OpenGauss数据库的详细教程
2021/06/23 PostgreSQL
Vue3.0中Ref与Reactive的区别示例详析
2021/07/07 Vue.js