详解torch.Tensor的4种乘法


Posted in Python onSeptember 03, 2020

torch.Tensor有4种常见的乘法:*, torch.mul, torch.mm, torch.matmul. 本文抛砖引玉,简单叙述一下这4种乘法的区别,具体使用还是要参照官方文档。

点乘

a与b做*乘法,原则是如果a与b的size不同,则以某种方式将a或b进行复制,使得复制后的a和b的size相同,然后再将a和b做element-wise的乘法

下面以*标量和*一维向量为例展示上述过程。

* 标量

Tensor与标量k做*乘法的结果是Tensor的每个元素乘以k(相当于把k复制成与lhs大小相同,元素全为k的Tensor).

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
    [2., 2., 2., 2.],
    [2., 2., 2., 2.]])

* 一维向量

Tensor与行向量做*乘法的结果是每列乘以行向量对应列的值(相当于把行向量的行复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的列数与行向量的列数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> a * b
tensor([[1., 2., 3., 4.],
    [1., 2., 3., 4.],
    [1., 2., 3., 4.]])

Tensor与列向量做*乘法的结果是每行乘以列向量对应行的值(相当于把列向量的列复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的行数与列向量的行数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
    [2.],
    [3.]])
>>> a * b
tensor([[1., 1., 1., 1.],
    [2., 2., 2., 2.],
    [3., 3., 3., 3.]])

* 矩阵

经Arsmart在评论区提醒,增补一个矩阵 * 矩阵的例子,感谢Arsmart的热心评论!
如果两个二维矩阵A与B做点积A * B,则要求A与B的维度完全相同,即A的行数=B的行数,A的列数=B的列数

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> a * a
tensor([[1, 4],
    [4, 9]])

broadcast

点积是broadcast的。broadcast是torch的一个概念,简单理解就是在一定的规则下允许高维Tensor和低维Tensor之间的运算。broadcast的概念稍显复杂,在此不做展开,可以参考官方文档关于broadcast的介绍. 在torch.matmul里会有关于broadcast的应用的一个简单的例子。

这里举一个点积broadcast的例子。在例子中,a是二维Tensor,b是三维Tensor,但是a的维度与b的后两位相同,那么a和b仍然可以做点积,点积结果是一个和b维度一样的三维Tensor,运算规则是:若c = a * b, 则c[i,*,*] = a * b[i, *, *],即沿着b的第0维做二维Tensor点积,或者可以理解为运算前将a沿着b的第0维也进行了expand操作,即a = a.expand(b.size()); a * b

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> a * b
tensor([[[ 1, 4],
     [ 4, 9]],

    [[-1, -4],
     [-4, -9]]])
>>> b * a
tensor([[[ 1, 4],
     [ 4, 9]],

    [[-1, -4],
     [-4, -9]]])

其实,上面提到的二维Tensor点积标量、二维Tensor点积行向量,都是发生在高维向量和低维向量之间的,也可以看作是broadcast.

torch.mul

官方文档关于torch.mul的介绍. 用法与*乘法相同,也是element-wise的乘法,也是支持broadcast的。

下面是几个torch.mul的例子.

乘标量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
    [2., 2., 2., 2.],
    [2., 2., 2., 2.]])

乘行向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> torch.mul(a, b)
tensor([[1., 2., 3., 4.],
    [1., 2., 3., 4.],
    [1., 2., 3., 4.]])

乘列向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
    [2.],
    [3.]])
>>> torch.mul(a, b)
tensor([[1., 1., 1., 1.],
    [2., 2., 2., 2.],
    [3., 3., 3., 3.]])

乘矩阵

例1:二维矩阵 mul 二维矩阵

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> torch.mul(a,a)
tensor([[1, 4],
    [4, 9]])

例2:二维矩阵 mul 三维矩阵(broadcast)

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> torch.mul(a,b)
tensor([[[ 1, 4],
     [ 4, 9]],

    [[-1, -4],
     [-4, -9]]])

torch.mm

官方文档关于torch.mm的介绍. 数学里的矩阵乘法,要求两个Tensor的维度满足矩阵乘法的要求.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(4,2)
>>> torch.mm(a, b)
tensor([[4., 4.],
    [4., 4.],
    [4., 4.]])

torch.matmul

官方文档关于torch.matmul的介绍. torch.mm的broadcast版本.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(5,4,2)
>>> torch.matmul(a, b)
tensor([[[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]],

    [[4., 4.],
     [4., 4.],
     [4., 4.]]])

同样的a和b,使用torch.mm相乘会报错

>>> torch.mm(a, b)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: matrices expected, got 2D, 3D tensors at /pytorch/aten/src/TH/generic/THTensorMath.cpp:2065

到此这篇关于详解torch.Tensor的4种乘法的文章就介绍到这了,更多相关torch.Tensor 乘法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python的id()函数介绍
Feb 10 Python
python解析文件示例
Jan 23 Python
python如何查看系统网络流量的信息
Sep 12 Python
Python HTTP客户端自定义Cookie实现实例
Apr 28 Python
Python入门_浅谈字符串的分片与索引、字符串的方法
May 16 Python
基于Python __dict__与dir()的区别详解
Oct 30 Python
python 利用栈和队列模拟递归的过程
May 29 Python
浅析python的优势和不足之处
Nov 20 Python
Django中使用Celery的方法示例
Nov 29 Python
python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法
Aug 27 Python
Python count函数使用方法实例解析
Mar 23 Python
python Matplotlib基础--如何添加文本和标注
Jan 26 Python
详解pytorch tensor和ndarray转换相关总结
Sep 03 #Python
python开发入门——列表生成式
Sep 03 #Python
Pytorch之Tensor和Numpy之间的转换的实现方法
Sep 03 #Python
Python 多线程C段扫描、检测 Ping扫描脚本的实现
Sep 03 #Python
Python开发入门——迭代的基本使用
Sep 03 #Python
Python 整行读取文本方法并去掉readlines换行\n操作
Sep 03 #Python
Python多分支if语句的使用
Sep 03 #Python
You might like
PHP文件下载类
2006/12/06 PHP
dedecms后台验证码总提示错误的解决方法
2007/03/21 PHP
PHP中函数内引用全局变量的方法
2008/10/20 PHP
PHP性能优化准备篇图解PEAR安装
2011/12/05 PHP
PHP5中GD库生成图形验证码(有汉字)
2013/07/28 PHP
PHP 利用Mail_MimeDecode类提取邮件信息示例
2014/01/26 PHP
学习php设计模式 php实现原型模式(prototype)
2015/12/07 PHP
PHP闭包定义与使用简单示例
2018/04/13 PHP
js 操作css实现代码
2009/06/11 Javascript
js模仿jquery的写法示例代码
2013/06/16 Javascript
无缝滚动js代码通俗易懂(自写)
2013/06/19 Javascript
B/S模式项目中常用的javascript汇总
2013/12/17 Javascript
JavaScript文本框脚本编写的注意事项
2016/01/25 Javascript
vue组件传递对象中实现单向绑定的示例
2018/02/28 Javascript
Vue 使用 Mint UI 实现左滑删除效果CellSwipe
2018/04/27 Javascript
JavaScript继承定义与用法实践分析
2018/05/28 Javascript
微信小程序拍照和摄像功能实现方法示例
2019/02/01 Javascript
微信小程序缓存过期时间的使用详情
2019/05/12 Javascript
vue实现在进行增删改操作后刷新页面
2020/08/05 Javascript
vue实现几秒后跳转新页面代码
2020/09/09 Javascript
使用Python发送邮件附件以定时备份MySQL的教程
2015/04/25 Python
Python中的time模块与datetime模块用法总结
2016/06/30 Python
简单谈谈python中的lambda表达式
2018/01/19 Python
解决安装python库时windows error5 报错的问题
2018/10/21 Python
python实现两个经纬度点之间的距离和方位角的方法
2019/07/05 Python
PyTorch中clone()、detach()及相关扩展详解
2020/12/09 Python
微软加拿大官方网站:Microsoft Canada
2019/04/28 全球购物
土木工程实习生自我鉴定
2013/09/19 职场文书
采购部岗位职责
2013/11/24 职场文书
企业负责人任命书
2014/06/05 职场文书
电气自动化求职信
2014/06/24 职场文书
邻里守望志愿服务活动方案
2014/08/15 职场文书
2015年上半年物业工作总结
2015/03/30 职场文书
安全员岗位职责范本
2015/04/11 职场文书
浅谈MySQL user权限表
2021/06/18 MySQL
maven 解包依赖项中的文件的解决方法
2022/07/15 Java/Android