Python实现语音识别和语音合成功能


Posted in Python onSeptember 20, 2019

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布,(freq.wav数据地址)

# -*- encoding:utf-8 -*-
import numpy as np
import numpy.fft as nf
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt
sample_rate, sigs = wf.read('../machine_learning_date/freq.wav')
print(sample_rate)   # 8000采样率
print(sigs.shape)  # (3251,)
sigs = sigs / (2 ** 15) # 归一化
times = np.arange(len(sigs)) / sample_rate
freqs = nf.fftfreq(sigs.size, 1 / sample_rate)
ffts = nf.fft(sigs)
pows = np.abs(ffts)
plt.figure('Audio')
plt.subplot(121)
plt.title('Time Domain')
plt.xlabel('Time', fontsize=12)
plt.ylabel('Signal', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(times, sigs, c='dodgerblue', label='Signal')
plt.legend()
plt.subplot(122)
plt.title('Frequency Domain')
plt.xlabel('Frequency', fontsize=12)
plt.ylabel('Power', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c='orangered', label='Power')
plt.legend()
plt.tight_layout()
plt.show()

Python实现语音识别和语音合成功能

语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf
import python_speech_features as sf
sample_rate, sigs = wf.read('../data/freq.wav')
mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features
import scipy.io.wavfile as wf
import python_speech_features as sf
import matplotlib.pyplot as mp
sample_rate, sigs = wf.read(
  '../ml_data/speeches/training/banana/banana01.wav')
mfcc = sf.mfcc(sigs, sample_rate)
mp.matshow(mfcc.T, cmap='gist_rainbow')
mp.show()

Python实现语音识别和语音合成功能

隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl
model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
# n_components: 用几个高斯分布函数拟合样本数据
# covariance_type: 相关矩阵的辅对角线进行相关性比较
# n_iter: 最大迭代上限
model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。

2、把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |

    |

| mfcc | apple |

| mfcc |

    |

.....

由上述训练集样本可以训练一个用于匹配apple的HMM。

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

4、读取testing文件夹中的测试样本,整理测试样本

| mfcc | apple |

| mfcc | lime   |

5、针对每一个测试样本:

1、分别使用7个HMM模型,对测试样本计算score得分。

2、取7个模型中得分最高的模型所属类别作为预测类别。

import os
import numpy as np
import scipy.io.wavfile as wf
import python_speech_features as sf
import hmmlearn.hmm as hl
​
#1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。
def search_file(directory):
  # 使传过来的directory匹配当前操作系统
  # {'apple':[url, url, url ... ], 'banana':[...]}  
  directory = os.path.normpath(directory)
  objects = {}
  # curdir:当前目录 
  # subdirs: 当前目录下的所有子目录
  # files: 当前目录下的所有文件名
  for curdir, subdirs, files in os.walk(directory):
    for file in files:
      if file.endswith('.wav'):
        label = curdir.split(os.path.sep)[-1]
        if label not in objects:
          objects[label] = []
        # 把路径添加到label对应的列表中
        path = os.path.join(curdir, file)
        objects[label].append(path)
  return objects
​
#读取训练集数据
train_samples = \
  search_file('../ml_data/speeches/training')
​
'''

2. 把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  .....
  由上述训练集样本可以训练一个用于匹配apple的HMM。
'''
train_x, train_y = [], []
# 遍历7次 apple/banana/...
for label, filenames in train_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  train_x.append(mfccs)
  train_y.append(label)
'''
训练集:
  train_x train_y
  ----------------
  | mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  ----------------
  | mfcc |    |
  | mfcc | banana |
  | mfcc |    |
  -----------------
  | mfcc |    |
  | mfcc | lime  |
  | mfcc |    |
  -----------------
'''
# {'apple':object, 'banana':object ...}
models = {}
for mfccs, label in zip(train_x, train_y):
  model = hl.GaussianHMM(n_components=4, 
    covariance_type='diag', n_iter=1000)
  models[label] = model.fit(mfccs)
'''

4. 读取testing文件夹中的测试样本,针对每一个测试样本:

   1. 分别使用7个HMM模型,对测试样本计算score得分。

   2. 取7个模型中得分最高的模型所属类别作为预测类别。

'''
#读取测试集数据
test_samples = \
  search_file('../ml_data/speeches/testing')
​
test_x, test_y = [], []
for label, filenames in test_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  test_x.append(mfccs)
  test_y.append(label)
​
'''测试集:
  test_x test_y
  -----------------
  | mfcc | apple |
  -----------------
  | mfcc | banana |
  -----------------
  | mfcc | lime  |
  -----------------
'''
pred_test_y = []
for mfccs in test_x:
# 判断mfccs与哪一个HMM模型更加匹配
best_score, best_label = None, None
for label, model in models.items():
score = model.score(mfccs)
if (best_score is None) or (best_score<score):
best_score = score
best_label = label
pred_test_y.append(best_label)
​
print(test_y)
print(pred_test_y)

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例:

import json
import numpy as np
import scipy.io.wavfile as wf
with open('../data/12.json', 'r') as f:
  freqs = json.loads(f.read())
tones = [
  ('G5', 1.5),
  ('A5', 0.5),
  ('G5', 1.5),
  ('E5', 0.5),
  ('D5', 0.5),
  ('E5', 0.25),
  ('D5', 0.25),
  ('C5', 0.5),
  ('A4', 0.5),
  ('C5', 0.75)]
sample_rate = 44100
music = np.empty(shape=1)
for tone, duration in tones:
  times = np.linspace(0, duration, duration * sample_rate)
  sound = np.sin(2 * np.pi * freqs[tone] * times)
  music = np.append(music, sound)
music *= 2 ** 15
music = music.astype(np.int16)
wf.write('../data/music.wav', sample_rate, music)

总结

以上所述是小编给大家介绍的Python实现语音识别和语音合成功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python 条件判断的缩写方法
Sep 06 Python
Python设计模式之MVC模式简单示例
Jan 10 Python
python生成多个只含0,1元素的随机数组或列表的实例
Nov 12 Python
Matplotlib中文乱码的3种解决方案
Nov 15 Python
pygame游戏之旅 添加icon和bgm音效的方法
Nov 21 Python
django query模块
Apr 20 Python
pandas计数 value_counts()的使用
Jun 24 Python
python实现读取excel文件中所有sheet操作示例
Aug 09 Python
详解Python 字符串相似性的几种度量方法
Aug 29 Python
Python查找不限层级Json数据中某个key或者value的路径方式
Feb 27 Python
Python socket服务常用操作代码实例
Jun 22 Python
改变 Python 中线程执行顺序的方法
Sep 24 Python
使用python将最新的测试报告以附件的形式发到指定邮箱
Sep 20 #Python
Python使用__new__()方法为对象分配内存及返回对象的引用示例
Sep 20 #Python
Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)原理与用法分析
Sep 20 #Python
Python 类属性与实例属性,类对象与实例对象用法分析
Sep 20 #Python
使用python脚本自动创建pip.ini配置文件代码实例
Sep 20 #Python
使用Python给头像戴上圣诞帽的图像操作过程解析
Sep 20 #Python
Python 函数用法简单示例【定义、参数、返回值、函数嵌套】
Sep 20 #Python
You might like
PHP 加密/解密函数 dencrypt(动态密文,带压缩功能,支持中文)
2009/01/30 PHP
如何使用FireFox插件FirePHP调试PHP
2013/07/23 PHP
php mail to 配置详解
2014/01/16 PHP
php数组随机排序实现方法
2015/06/13 PHP
详解php与ethereum客户端交互
2018/04/28 PHP
PHP两个n位的二进制整数相加问题的解决
2018/08/26 PHP
PHP按符号截取字符串的指定部分的实现方法
2018/09/10 PHP
使用laravel根据用户类型来显示或隐藏字段
2019/10/17 PHP
PHP如何使用array_unshift()在数组开头插入元素
2020/09/01 PHP
Enter回车切换输入焦点实现思路与代码兼容各大浏览器
2014/09/01 Javascript
jQuery的事件委托实例分析
2015/07/15 Javascript
JS原型对象的创建方法详解
2016/06/16 Javascript
基于JavaScript定位当前的地理位置
2017/04/11 Javascript
windows下vue-cli及webpack搭建安装环境
2017/04/25 Javascript
gulp解决跨域的配置文件问题
2017/06/08 Javascript
基于JavaScript实现数码时钟效果
2020/03/30 Javascript
基于js 本地存储(详解)
2017/08/16 Javascript
vue+element获取el-table某行的下标,根据下标操作数组对象方式
2020/08/07 Javascript
使用jquery实现轮播图效果
2021/01/02 jQuery
Python中的错误和异常处理简单操作示例【try-except用法】
2017/07/25 Python
Python3最长回文子串算法示例
2019/03/04 Python
浅谈Python爬虫基本套路
2019/03/25 Python
Python整数对象实现原理详解
2019/07/01 Python
python re模块匹配贪婪和非贪婪模式详解
2020/02/11 Python
Django DRF路由与扩展功能的实现
2020/06/03 Python
Python配置pip国内镜像源的实现
2020/08/20 Python
用Python自动清理电脑内重复文件,只要10行代码(自动脚本)
2021/01/09 Python
Ajax的优点和缺点
2014/11/21 面试题
建筑学推荐信
2013/11/03 职场文书
品质主管的岗位职责
2013/12/04 职场文书
旅游网创业计划书
2014/01/31 职场文书
《和我们一样享受春天》教学反思
2014/02/07 职场文书
推广活动策划方案
2014/08/23 职场文书
2014年档案管理工作总结
2014/11/17 职场文书
初三英语教学计划
2015/01/23 职场文书
Python3 如何开启自带http服务
2021/05/18 Python