Python实现语音识别和语音合成功能


Posted in Python onSeptember 20, 2019

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布,(freq.wav数据地址)

# -*- encoding:utf-8 -*-
import numpy as np
import numpy.fft as nf
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt
sample_rate, sigs = wf.read('../machine_learning_date/freq.wav')
print(sample_rate)   # 8000采样率
print(sigs.shape)  # (3251,)
sigs = sigs / (2 ** 15) # 归一化
times = np.arange(len(sigs)) / sample_rate
freqs = nf.fftfreq(sigs.size, 1 / sample_rate)
ffts = nf.fft(sigs)
pows = np.abs(ffts)
plt.figure('Audio')
plt.subplot(121)
plt.title('Time Domain')
plt.xlabel('Time', fontsize=12)
plt.ylabel('Signal', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(times, sigs, c='dodgerblue', label='Signal')
plt.legend()
plt.subplot(122)
plt.title('Frequency Domain')
plt.xlabel('Frequency', fontsize=12)
plt.ylabel('Power', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c='orangered', label='Power')
plt.legend()
plt.tight_layout()
plt.show()

Python实现语音识别和语音合成功能

语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf
import python_speech_features as sf
sample_rate, sigs = wf.read('../data/freq.wav')
mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features
import scipy.io.wavfile as wf
import python_speech_features as sf
import matplotlib.pyplot as mp
sample_rate, sigs = wf.read(
  '../ml_data/speeches/training/banana/banana01.wav')
mfcc = sf.mfcc(sigs, sample_rate)
mp.matshow(mfcc.T, cmap='gist_rainbow')
mp.show()

Python实现语音识别和语音合成功能

隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl
model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
# n_components: 用几个高斯分布函数拟合样本数据
# covariance_type: 相关矩阵的辅对角线进行相关性比较
# n_iter: 最大迭代上限
model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。

2、把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |

    |

| mfcc | apple |

| mfcc |

    |

.....

由上述训练集样本可以训练一个用于匹配apple的HMM。

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

4、读取testing文件夹中的测试样本,整理测试样本

| mfcc | apple |

| mfcc | lime   |

5、针对每一个测试样本:

1、分别使用7个HMM模型,对测试样本计算score得分。

2、取7个模型中得分最高的模型所属类别作为预测类别。

import os
import numpy as np
import scipy.io.wavfile as wf
import python_speech_features as sf
import hmmlearn.hmm as hl
​
#1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。
def search_file(directory):
  # 使传过来的directory匹配当前操作系统
  # {'apple':[url, url, url ... ], 'banana':[...]}  
  directory = os.path.normpath(directory)
  objects = {}
  # curdir:当前目录 
  # subdirs: 当前目录下的所有子目录
  # files: 当前目录下的所有文件名
  for curdir, subdirs, files in os.walk(directory):
    for file in files:
      if file.endswith('.wav'):
        label = curdir.split(os.path.sep)[-1]
        if label not in objects:
          objects[label] = []
        # 把路径添加到label对应的列表中
        path = os.path.join(curdir, file)
        objects[label].append(path)
  return objects
​
#读取训练集数据
train_samples = \
  search_file('../ml_data/speeches/training')
​
'''

2. 把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  .....
  由上述训练集样本可以训练一个用于匹配apple的HMM。
'''
train_x, train_y = [], []
# 遍历7次 apple/banana/...
for label, filenames in train_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  train_x.append(mfccs)
  train_y.append(label)
'''
训练集:
  train_x train_y
  ----------------
  | mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  ----------------
  | mfcc |    |
  | mfcc | banana |
  | mfcc |    |
  -----------------
  | mfcc |    |
  | mfcc | lime  |
  | mfcc |    |
  -----------------
'''
# {'apple':object, 'banana':object ...}
models = {}
for mfccs, label in zip(train_x, train_y):
  model = hl.GaussianHMM(n_components=4, 
    covariance_type='diag', n_iter=1000)
  models[label] = model.fit(mfccs)
'''

4. 读取testing文件夹中的测试样本,针对每一个测试样本:

   1. 分别使用7个HMM模型,对测试样本计算score得分。

   2. 取7个模型中得分最高的模型所属类别作为预测类别。

'''
#读取测试集数据
test_samples = \
  search_file('../ml_data/speeches/testing')
​
test_x, test_y = [], []
for label, filenames in test_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  test_x.append(mfccs)
  test_y.append(label)
​
'''测试集:
  test_x test_y
  -----------------
  | mfcc | apple |
  -----------------
  | mfcc | banana |
  -----------------
  | mfcc | lime  |
  -----------------
'''
pred_test_y = []
for mfccs in test_x:
# 判断mfccs与哪一个HMM模型更加匹配
best_score, best_label = None, None
for label, model in models.items():
score = model.score(mfccs)
if (best_score is None) or (best_score<score):
best_score = score
best_label = label
pred_test_y.append(best_label)
​
print(test_y)
print(pred_test_y)

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例:

import json
import numpy as np
import scipy.io.wavfile as wf
with open('../data/12.json', 'r') as f:
  freqs = json.loads(f.read())
tones = [
  ('G5', 1.5),
  ('A5', 0.5),
  ('G5', 1.5),
  ('E5', 0.5),
  ('D5', 0.5),
  ('E5', 0.25),
  ('D5', 0.25),
  ('C5', 0.5),
  ('A4', 0.5),
  ('C5', 0.75)]
sample_rate = 44100
music = np.empty(shape=1)
for tone, duration in tones:
  times = np.linspace(0, duration, duration * sample_rate)
  sound = np.sin(2 * np.pi * freqs[tone] * times)
  music = np.append(music, sound)
music *= 2 ** 15
music = music.astype(np.int16)
wf.write('../data/music.wav', sample_rate, music)

总结

以上所述是小编给大家介绍的Python实现语音识别和语音合成功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
一个简单的python程序实例(通讯录)
Nov 29 Python
python之import机制详解
Jul 03 Python
Python使用CMD模块更优雅的运行脚本
May 11 Python
用matplotlib画等高线图详解
Dec 14 Python
python中的随机函数小结
Jan 27 Python
python2.7读取文件夹下所有文件名称及内容的方法
Feb 24 Python
python 实现对数据集的归一化的方法(0-1之间)
Jul 17 Python
python读取txt文件并取其某一列数据的示例
Feb 19 Python
详解如何从TensorFlow的mnist数据集导出手写体数字图片
Aug 05 Python
Python + selenium + crontab实现每日定时自动打卡功能
Mar 31 Python
python 自动识别并连接串口的实现
Jan 19 Python
python基于turtle绘制几何图形
Jun 15 Python
使用python将最新的测试报告以附件的形式发到指定邮箱
Sep 20 #Python
Python使用__new__()方法为对象分配内存及返回对象的引用示例
Sep 20 #Python
Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)原理与用法分析
Sep 20 #Python
Python 类属性与实例属性,类对象与实例对象用法分析
Sep 20 #Python
使用python脚本自动创建pip.ini配置文件代码实例
Sep 20 #Python
使用Python给头像戴上圣诞帽的图像操作过程解析
Sep 20 #Python
Python 函数用法简单示例【定义、参数、返回值、函数嵌套】
Sep 20 #Python
You might like
php+mysql开源XNA 聚合程序发布 下载
2007/07/13 PHP
实用函数9
2007/11/08 PHP
自己写的php curl库实现整站克隆功能
2015/02/12 PHP
PHP Reflection API详解
2015/05/12 PHP
PHP获取数组的键与值方法小结
2015/06/13 PHP
PHP实现动态创建XML文档的方法
2018/03/30 PHP
JavaScript 滚轮事件使用说明
2010/03/07 Javascript
jQuery使用prepend()方法在元素前添加内容用法实例
2015/03/26 Javascript
一款简单的jQuery图片标注效果附源码下载
2016/03/22 Javascript
基于BootStrap Metronic开发框架经验小结【二】列表分页处理和插件JSTree的使用
2016/05/12 Javascript
JavaScript中输出信息的方法(信息确认框-提示输入框-文档流输出)
2016/06/12 Javascript
微信小程序开发之入门实例教程篇
2017/03/07 Javascript
微信小程序 列表的上拉加载和下拉刷新的实现
2017/04/01 Javascript
vue移动端实现下拉刷新
2018/04/22 Javascript
图文讲解vue的v-if使用方法
2019/02/11 Javascript
详解js中let与var声明变量的区别
2020/04/05 Javascript
bootstrapValidator表单校验、更改状态、新增、移除校验字段的实例代码
2020/05/19 Javascript
vue项目在线上服务器访问失败原因分析
2020/08/14 Javascript
Android分包MultiDex策略详解
2017/10/30 Python
Python数据可视化正态分布简单分析及实现代码
2017/12/04 Python
python2爬取百度贴吧指定关键字和图片代码实例
2019/08/14 Python
对Python 中矩阵或者数组相减的法则详解
2019/08/26 Python
python中有关时间日期格式转换问题
2019/12/25 Python
详解python中GPU版本的opencv常用方法介绍
2020/07/24 Python
Python Celery异步任务队列使用方法解析
2020/08/10 Python
YesStyle美国/全球:购买亚洲时装、美容化妆品和生活百货
2017/01/16 全球购物
ebookers英国:隶属全球最大的在线旅游公司Expedia
2017/12/28 全球购物
MADE法国:提供原创设计师家具
2018/09/18 全球购物
竞选班长演讲稿
2013/12/30 职场文书
如何写一份好的英文求职信
2014/03/19 职场文书
自强自立美德少年事迹材料
2014/08/16 职场文书
2015年高三班主任工作总结
2015/05/21 职场文书
2016个人廉洁自律承诺书
2016/03/25 职场文书
工作违纪的检讨书范文
2019/07/09 职场文书
python自然语言处理之字典树知识总结
2021/04/25 Python
Win10鼠标宏怎么设置?win10系统鼠标宏的设置方法
2022/08/14 数码科技