Python如何读写二进制数组数据


Posted in Python onAugust 01, 2020

问题

你想读写一个二进制数组的结构化数据到Python元组中。

解决方案

可以使用 struct 模块处理二进制数据。 下面是一段示例代码将一个Python元组列表写入一个二进制文件,并使用 struct 将每个元组编码为一个结构体。

from struct import Struct
def write_records(records, format, f):
  '''
  Write a sequence of tuples to a binary file of structures.
  '''
  record_struct = Struct(format)
  for r in records:
    f.write(record_struct.pack(*r))

# Example
if __name__ == '__main__':
  records = [ (1, 2.3, 4.5),
        (6, 7.8, 9.0),
        (12, 13.4, 56.7) ]
  with open('data.b', 'wb') as f:
    write_records(records, '<idd', f)

有很多种方法来读取这个文件并返回一个元组列表。 首先,如果你打算以块的形式增量读取文件,你可以这样做:

from struct import Struct

def read_records(format, f):
  record_struct = Struct(format)
  chunks = iter(lambda: f.read(record_struct.size), b'')
  return (record_struct.unpack(chunk) for chunk in chunks)

# Example
if __name__ == '__main__':
  with open('data.b','rb') as f:
    for rec in read_records('<idd', f):
      # Process rec
      ...

如果你想将整个文件一次性读取到一个字节字符串中,然后在分片解析。那么你可以这样做:

from struct import Struct

def unpack_records(format, data):
  record_struct = Struct(format)
  return (record_struct.unpack_from(data, offset)
      for offset in range(0, len(data), record_struct.size))

# Example
if __name__ == '__main__':
  with open('data.b', 'rb') as f:
    data = f.read()
  for rec in unpack_records('<idd', data):
    # Process rec
    ...

两种情况下的结果都是一个可返回用来创建该文件的原始元组的可迭代对象。

讨论

对于需要编码和解码二进制数据的程序而言,通常会使用 struct 模块。 为了声明一个新的结构体,只需要像这样创建一个 Struct 实例即可:

# Little endian 32-bit integer, two double precision floats
record_struct = Struct('<idd')

结构体通常会使用一些结构码值i, d, f等 [参考 Python文档 ]。 这些代码分别代表某个特定的二进制数据类型如32位整数,64位浮点数,32位浮点数等。 第一个字符 < 指定了字节顺序。在这个例子中,它表示”低位在前”。 更改这个字符为 > 表示高位在前,或者是 ! 表示网络字节顺序。

产生的 Struct 实例有很多属性和方法用来操作相应类型的结构。 size 属性包含了结构的字节数,这在I/O操作时非常有用。 pack() unpack() 方法被用来打包和解包数据。比如:

>>> from struct import Struct
>>> record_struct = Struct('<idd')
>>> record_struct.size
20
>>> record_struct.pack(1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> record_struct.unpack(_)
(1, 2.0, 3.0)
>>>

有时候你还会看到 pack() unpack() 操作以模块级别函数被调用,类似下面这样:

>>> import struct
>>> struct.pack('<idd', 1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> struct.unpack('<idd', _)
(1, 2.0, 3.0)
>>>

这样可以工作,但是感觉没有实例方法那么优雅,特别是在你代码中同样的结构出现在多个地方的时候。 通过创建一个 Struct 实例,格式代码只会指定一次并且所有的操作被集中处理。 这样一来代码维护就变得更加简单了(因为你只需要改变一处代码即可)。

读取二进制结构的代码要用到一些非常有趣而优美的编程技巧。 在函数 read_records 中,iter() 被用来创建一个返回固定大小数据块的迭代器。 这个迭代器会不断的调用一个用户提供的可调用对象(比如 lambda: f.read(record_struct.size) ), 直到它返回一个特殊的值(如b'‘),这时候迭代停止。例如:

>>> f = open('data.b', 'rb')
>>> chunks = iter(lambda: f.read(20), b'')
>>> chunks
<callable_iterator object at 0x10069e6d0>
>>> for chk in chunks:
... print(chk)
...
b'\x01\x00\x00\x00ffffff\x02@\x00\x00\x00\x00\x00\x00\x12@'
b'\x06\x00\x00\x00333333\x1f@\x00\x00\x00\x00\x00\x00"@'
b'\x0c\x00\x00\x00\xcd\xcc\xcc\xcc\xcc\xcc*@\x9a\x99\x99\x99\x99YL@'
>>>

如你所见,创建一个可迭代对象的一个原因是它能允许使用一个生成器推导来创建记录。 如果你不使用这种技术,那么代码可能会像下面这样:

def read_records(format, f):
  record_struct = Struct(format)
  while True:
    chk = f.read(record_struct.size)
    if chk == b'':
      break
    yield record_struct.unpack(chk)

在函数 unpack_records() 中使用了另外一种方法 unpack_from() 。 unpack_from() 对于从一个大型二进制数组中提取二进制数据非常有用, 因为它不会产生任何的临时对象或者进行内存复制操作。 你只需要给它一个字节字符串(或数组)和一个字节偏移量,它会从那个位置开始直接解包数据。

如果你使用 unpack() 来代替 unpack_from() , 你需要修改代码来构造大量的小的切片以及进行偏移量的计算。比如:

def unpack_records(format, data):
  record_struct = Struct(format)
  return (record_struct.unpack(data[offset:offset + record_struct.size])
      for offset in range(0, len(data), record_struct.size))

这种方案除了代码看上去很复杂外,还得做很多额外的工作,因为它执行了大量的偏移量计算, 复制数据以及构造小的切片对象。 如果你准备从读取到的一个大型字节字符串中解包大量的结构体的话,unpack_from() 会表现的更出色。

在解包的时候,collections 模块中的命名元组对象或许是你想要用到的。 它可以让你给返回元组设置属性名称。例如:

from collections import namedtuple

Record = namedtuple('Record', ['kind','x','y'])

with open('data.p', 'rb') as f:
  records = (Record(*r) for r in read_records('<idd', f))

for r in records:
  print(r.kind, r.x, r.y)

如果你的程序需要处理大量的二进制数据,你最好使用 numpy 模块。 例如,你可以将一个二进制数据读取到一个结构化数组中而不是一个元组列表中。就像下面这样:

>>> import numpy as np
>>> f = open('data.b', 'rb')
>>> records = np.fromfile(f, dtype='<i,<d,<d')
>>> records
array([(1, 2.3, 4.5), (6, 7.8, 9.0), (12, 13.4, 56.7)],
dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<f8')])
>>> records[0]
(1, 2.3, 4.5)
>>> records[1]
(6, 7.8, 9.0)
>>>

最后提一点,如果你需要从已知的文件格式(如图片格式,图形文件,HDF5等)中读取二进制数据时, 先检查看看Python是不是已经提供了现存的模块。因为不到万不得已没有必要去重复造轮子。

以上就是Python如何读写二进制数组数据的详细内容,更多关于Python读写二进制数组数据的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python函数中定义参数的四种方式
Nov 30 Python
Windows平台Python连接sqlite3数据库的方法分析
Jul 12 Python
python XlsxWriter模块创建aexcel表格的实例讲解
May 03 Python
Python利用splinter实现浏览器自动化操作方法
May 11 Python
对Python 窗体(tkinter)文本编辑器(Text)详解
Oct 11 Python
PyQt弹出式对话框的常用方法及标准按钮类型
Feb 27 Python
Python实现九宫格式的朋友圈功能内附“马云”朋友圈
May 07 Python
python数组循环处理方法
Aug 26 Python
解决tensorflow添加ptb库的问题
Feb 10 Python
浅谈pytorch中torch.max和F.softmax函数的维度解释
Jun 28 Python
python绘制趋势图的示例
Sep 17 Python
python获取linux系统信息的三种方法
Oct 14 Python
Python将字典转换为XML的方法
Aug 01 #Python
Python Flask异步发送邮件实现方法解析
Aug 01 #Python
Python实现弹球小游戏
Aug 01 #Python
序列化Python对象的方法
Aug 01 #Python
Python 忽略文件名编码的方法
Aug 01 #Python
Python 如何展开嵌套的序列
Aug 01 #Python
Python 日期与时间转换的方法
Aug 01 #Python
You might like
德生PL450的电路分析和低放电路的改进办法
2021/03/02 无线电
PHP使用递归方式列出当前目录下所有文件的方法
2015/06/02 PHP
javascript 进阶篇2 CSS XML学习
2012/03/14 Javascript
文本框获得焦点和失去焦点的判断代码
2012/03/18 Javascript
ExtJS实现文件下载的方法实例
2013/11/09 Javascript
jQuery中document与window以及load与ready 区别详解
2014/12/29 Javascript
Angular用来控制元素的展示与否的原生指令介绍
2015/01/07 Javascript
jQuery实现数秒后自动提交form的方法
2015/03/05 Javascript
动态创建按钮的JavaScript代码
2016/01/29 Javascript
如何使用JS在HTML中自定义字符串格式化
2017/07/20 Javascript
jQuery实现上传图片前预览效果功能
2017/08/03 jQuery
node.js-v6新版安装具体步骤(分享)
2017/09/06 Javascript
node内置调试方法总结
2018/02/22 Javascript
Python 迭代器工具包【推荐】
2016/05/06 Python
Python使用openpyxl读写excel文件的方法
2017/06/30 Python
flask中主动抛出异常及统一异常处理代码示例
2018/01/18 Python
详解python中asyncio模块
2018/03/03 Python
TensorFlow模型保存/载入的两种方法
2018/03/08 Python
python实时监控cpu小工具
2018/06/21 Python
Python面向对象程序设计构造函数和析构函数用法分析
2019/04/12 Python
不归路系列:Python入门之旅-一定要注意缩进!!!(推荐)
2019/04/16 Python
Python 正则表达式 re.match/re.search/re.sub的使用解析
2019/07/22 Python
python闭包、深浅拷贝、垃圾回收、with语句知识点汇总
2020/03/11 Python
浅谈Python中threading join和setDaemon用法及区别说明
2020/05/02 Python
浅谈Python爬虫原理与数据抓取
2020/07/21 Python
python 提高开发效率的5个小技巧
2020/10/19 Python
html5 冒号分隔符对齐的实现
2019/07/31 HTML / CSS
文明礼仪事迹材料
2014/01/09 职场文书
婚礼主持结束词
2014/03/13 职场文书
新疆民族团结演讲稿
2014/08/27 职场文书
讲党性心得体会
2014/09/03 职场文书
初中学生操行评语
2014/12/26 职场文书
委托书的样本
2015/01/28 职场文书
丽江古城导游词
2015/02/03 职场文书
幼儿园毕业典礼园长致辞
2015/07/29 职场文书
Go遍历struct,map,slice的实现
2021/06/13 Golang