Python如何读写二进制数组数据


Posted in Python onAugust 01, 2020

问题

你想读写一个二进制数组的结构化数据到Python元组中。

解决方案

可以使用 struct 模块处理二进制数据。 下面是一段示例代码将一个Python元组列表写入一个二进制文件,并使用 struct 将每个元组编码为一个结构体。

from struct import Struct
def write_records(records, format, f):
  '''
  Write a sequence of tuples to a binary file of structures.
  '''
  record_struct = Struct(format)
  for r in records:
    f.write(record_struct.pack(*r))

# Example
if __name__ == '__main__':
  records = [ (1, 2.3, 4.5),
        (6, 7.8, 9.0),
        (12, 13.4, 56.7) ]
  with open('data.b', 'wb') as f:
    write_records(records, '<idd', f)

有很多种方法来读取这个文件并返回一个元组列表。 首先,如果你打算以块的形式增量读取文件,你可以这样做:

from struct import Struct

def read_records(format, f):
  record_struct = Struct(format)
  chunks = iter(lambda: f.read(record_struct.size), b'')
  return (record_struct.unpack(chunk) for chunk in chunks)

# Example
if __name__ == '__main__':
  with open('data.b','rb') as f:
    for rec in read_records('<idd', f):
      # Process rec
      ...

如果你想将整个文件一次性读取到一个字节字符串中,然后在分片解析。那么你可以这样做:

from struct import Struct

def unpack_records(format, data):
  record_struct = Struct(format)
  return (record_struct.unpack_from(data, offset)
      for offset in range(0, len(data), record_struct.size))

# Example
if __name__ == '__main__':
  with open('data.b', 'rb') as f:
    data = f.read()
  for rec in unpack_records('<idd', data):
    # Process rec
    ...

两种情况下的结果都是一个可返回用来创建该文件的原始元组的可迭代对象。

讨论

对于需要编码和解码二进制数据的程序而言,通常会使用 struct 模块。 为了声明一个新的结构体,只需要像这样创建一个 Struct 实例即可:

# Little endian 32-bit integer, two double precision floats
record_struct = Struct('<idd')

结构体通常会使用一些结构码值i, d, f等 [参考 Python文档 ]。 这些代码分别代表某个特定的二进制数据类型如32位整数,64位浮点数,32位浮点数等。 第一个字符 < 指定了字节顺序。在这个例子中,它表示”低位在前”。 更改这个字符为 > 表示高位在前,或者是 ! 表示网络字节顺序。

产生的 Struct 实例有很多属性和方法用来操作相应类型的结构。 size 属性包含了结构的字节数,这在I/O操作时非常有用。 pack() unpack() 方法被用来打包和解包数据。比如:

>>> from struct import Struct
>>> record_struct = Struct('<idd')
>>> record_struct.size
20
>>> record_struct.pack(1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> record_struct.unpack(_)
(1, 2.0, 3.0)
>>>

有时候你还会看到 pack() unpack() 操作以模块级别函数被调用,类似下面这样:

>>> import struct
>>> struct.pack('<idd', 1, 2.0, 3.0)
b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08@'
>>> struct.unpack('<idd', _)
(1, 2.0, 3.0)
>>>

这样可以工作,但是感觉没有实例方法那么优雅,特别是在你代码中同样的结构出现在多个地方的时候。 通过创建一个 Struct 实例,格式代码只会指定一次并且所有的操作被集中处理。 这样一来代码维护就变得更加简单了(因为你只需要改变一处代码即可)。

读取二进制结构的代码要用到一些非常有趣而优美的编程技巧。 在函数 read_records 中,iter() 被用来创建一个返回固定大小数据块的迭代器。 这个迭代器会不断的调用一个用户提供的可调用对象(比如 lambda: f.read(record_struct.size) ), 直到它返回一个特殊的值(如b'‘),这时候迭代停止。例如:

>>> f = open('data.b', 'rb')
>>> chunks = iter(lambda: f.read(20), b'')
>>> chunks
<callable_iterator object at 0x10069e6d0>
>>> for chk in chunks:
... print(chk)
...
b'\x01\x00\x00\x00ffffff\x02@\x00\x00\x00\x00\x00\x00\x12@'
b'\x06\x00\x00\x00333333\x1f@\x00\x00\x00\x00\x00\x00"@'
b'\x0c\x00\x00\x00\xcd\xcc\xcc\xcc\xcc\xcc*@\x9a\x99\x99\x99\x99YL@'
>>>

如你所见,创建一个可迭代对象的一个原因是它能允许使用一个生成器推导来创建记录。 如果你不使用这种技术,那么代码可能会像下面这样:

def read_records(format, f):
  record_struct = Struct(format)
  while True:
    chk = f.read(record_struct.size)
    if chk == b'':
      break
    yield record_struct.unpack(chk)

在函数 unpack_records() 中使用了另外一种方法 unpack_from() 。 unpack_from() 对于从一个大型二进制数组中提取二进制数据非常有用, 因为它不会产生任何的临时对象或者进行内存复制操作。 你只需要给它一个字节字符串(或数组)和一个字节偏移量,它会从那个位置开始直接解包数据。

如果你使用 unpack() 来代替 unpack_from() , 你需要修改代码来构造大量的小的切片以及进行偏移量的计算。比如:

def unpack_records(format, data):
  record_struct = Struct(format)
  return (record_struct.unpack(data[offset:offset + record_struct.size])
      for offset in range(0, len(data), record_struct.size))

这种方案除了代码看上去很复杂外,还得做很多额外的工作,因为它执行了大量的偏移量计算, 复制数据以及构造小的切片对象。 如果你准备从读取到的一个大型字节字符串中解包大量的结构体的话,unpack_from() 会表现的更出色。

在解包的时候,collections 模块中的命名元组对象或许是你想要用到的。 它可以让你给返回元组设置属性名称。例如:

from collections import namedtuple

Record = namedtuple('Record', ['kind','x','y'])

with open('data.p', 'rb') as f:
  records = (Record(*r) for r in read_records('<idd', f))

for r in records:
  print(r.kind, r.x, r.y)

如果你的程序需要处理大量的二进制数据,你最好使用 numpy 模块。 例如,你可以将一个二进制数据读取到一个结构化数组中而不是一个元组列表中。就像下面这样:

>>> import numpy as np
>>> f = open('data.b', 'rb')
>>> records = np.fromfile(f, dtype='<i,<d,<d')
>>> records
array([(1, 2.3, 4.5), (6, 7.8, 9.0), (12, 13.4, 56.7)],
dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<f8')])
>>> records[0]
(1, 2.3, 4.5)
>>> records[1]
(6, 7.8, 9.0)
>>>

最后提一点,如果你需要从已知的文件格式(如图片格式,图形文件,HDF5等)中读取二进制数据时, 先检查看看Python是不是已经提供了现存的模块。因为不到万不得已没有必要去重复造轮子。

以上就是Python如何读写二进制数组数据的详细内容,更多关于Python读写二进制数组数据的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python命令行参数sys.argv使用示例
Jan 28 Python
python使用自定义user-agent抓取网页的方法
Apr 15 Python
详解python脚本自动生成需要文件实例代码
Feb 04 Python
点球小游戏python脚本
May 22 Python
python简单鼠标自动点击某区域的实例
Jun 25 Python
Python秒算24点实现及原理详解
Jul 29 Python
python集合常见运算案例解析
Oct 17 Python
Django跨域资源共享问题(推荐)
Mar 09 Python
python实现超级马里奥
Mar 18 Python
python爬虫可以爬什么
Jun 16 Python
python上selenium的弹框操作实现
Jul 13 Python
把Anaconda中的环境导入到Pycharm里面的方法步骤
Oct 30 Python
Python将字典转换为XML的方法
Aug 01 #Python
Python Flask异步发送邮件实现方法解析
Aug 01 #Python
Python实现弹球小游戏
Aug 01 #Python
序列化Python对象的方法
Aug 01 #Python
Python 忽略文件名编码的方法
Aug 01 #Python
Python 如何展开嵌套的序列
Aug 01 #Python
Python 日期与时间转换的方法
Aug 01 #Python
You might like
PHP4与PHP3中一个不兼容问题的解决方法
2006/10/09 PHP
PHP开发框架总结收藏
2008/04/24 PHP
PHP实现简单数字分页效果
2015/07/26 PHP
Thinkphp自定义生成缩略图尺寸的方法
2019/08/05 PHP
Laravel框架表单验证操作实例分析
2019/09/30 PHP
php传值和传引用的区别点总结
2019/11/19 PHP
js和jquery批量绑定事件传参数一(新猪猪原创)
2010/06/23 Javascript
A标签中通过href和onclick传递的this对象实现思路
2013/04/19 Javascript
js校验表单后提交表单的三种方法总结
2014/02/28 Javascript
JavaScript结合Bootstrap仿微信后台多图文界面管理
2016/07/22 Javascript
浅谈js内置对象Math的属性和方法(推荐)
2016/09/19 Javascript
详解vue-loader在项目中是如何配置的
2018/06/04 Javascript
监听angularJs列表数据是否渲染完毕的方法示例
2018/11/07 Javascript
快速解决layui弹窗按enter键不停弹窗的问题
2019/09/18 Javascript
JavaScript 中的执行上下文和执行栈实例讲解
2021/02/25 Javascript
从Python程序中访问Java类的简单示例
2015/04/20 Python
Python中Class类用法实例分析
2015/11/12 Python
浅析python中SQLAlchemy排序的一个坑
2017/02/24 Python
Python通过matplotlib绘制动画简单实例
2017/12/13 Python
Flask之flask-script模块使用
2018/07/26 Python
python使用百度文字识别功能方法详解
2019/07/23 Python
关于Python中的向量相加和numpy中的向量相加效率对比
2019/08/26 Python
python 协程中的迭代器,生成器原理及应用实例详解
2019/10/28 Python
Python3如何使用tabulate打印数据
2020/09/25 Python
Python调用ffmpeg开源视频处理库,批量处理视频
2020/11/16 Python
HTML5 video播放器全屏(fullScreen)方法实例
2015/04/24 HTML / CSS
HTML利用九宫格原理进行网页布局
2020/03/13 HTML / CSS
美国玩具公司:U.S.Toy
2018/05/19 全球购物
EJB与JAVA BEAN的区别
2016/08/29 面试题
财务学生的职业生涯发展
2014/02/11 职场文书
给校长的建议书200字
2014/05/16 职场文书
元旦趣味活动方案
2014/08/22 职场文书
国家税务局干部作风整顿整改措施
2014/09/18 职场文书
音乐教师求职信范文
2015/03/20 职场文书
2015年实习生工作总结报告
2015/04/28 职场文书
《秋天的怀念》教学反思
2016/02/17 职场文书