使用Python给头像戴上圣诞帽的图像操作过程解析


Posted in Python onSeptember 20, 2019

前言

随着圣诞的到来,大家纷纷@官方微信给自己的头像加上一顶圣诞帽。当然这种事情用很多P图软件都可以做到。但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情。而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思。

用到的工具

  • OpenCV(毕竟我们主要的内容就是OpenCV...)
  • dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测。)

用到的语言为Python。但是完全可以改成C++版本,时间有限,就不写了。有兴趣的小伙伴可以拿来练手。

流程

一、素材准备

首先我们需要准备一个圣诞帽的素材,格式最好为PNG,因为PNG的话我们可以直接用Alpha通道作为掩膜使用。我们用到的圣诞帽如下图:

使用Python给头像戴上圣诞帽的图像操作过程解析

我们通过通道分离可以得到圣诞帽图像的alpha通道。代码如下:

r,g,b,a = cv2.split(hat_img) 
 rgb_hat = cv2.merge((r,g,b))
 cv2.imwrite("hat_alpha.jpg",a)

为了能够与rgb通道的头像图片进行运算,我们把rgb三通道合成一张rgb的彩色帽子图。Alpha通道的图像如下图所示。

使用Python给头像戴上圣诞帽的图像操作过程解析

二、人脸检测与人脸关键点检测

我们用下面这张图作为我们的测试图片。

使用Python给头像戴上圣诞帽的图像操作过程解析

下面我们用dlib的正脸检测器进行人脸检测,用dlib提供的模型提取人脸的五个关键点。代码如下:

# dlib人脸关键点检测器 predictor_path = "shape_predictor_5_face_landmarks.dat" predictor = dlib.shape_predictor(predictor_path)

 # dlib正脸检测器
 detector = dlib.get_frontal_face_detector()

 # 正脸检测
 dets = detector(img, 1)

 # 如果检测到人脸
 if len(dets)>0: 
   for d in dets:
     x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()
     # x,y,w,h = faceRect 
     cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)

     # 关键点检测,5个关键点
     shape = predictor(img, d)
     for point in shape.parts():
       cv2.circle(img,(point.x,point.y),3,color=(0,255,0))

     cv2.imshow("image",img)
     cv2.waitKey()

这部分效果如下图:

使用Python给头像戴上圣诞帽的图像操作过程解析

三、调整帽子大小

我们选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y方向的坐标用人脸框上线的y坐标表示。然后我们根据人脸检测得到的人脸的大小调整帽子的大小,使得帽子大小合适。

# 选取左右眼眼角的点 point1 = shape.part(0) point2 = shape.part(2)
     # 求两点中心
     eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
     # cv2.circle(img,eyes_center,3,color=(0,255,0)) 
     # cv2.imshow("image",img)
     # cv2.waitKey()
     # 根据人脸大小调整帽子大小
     factor = 1.5
     resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
     resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
     if resized_hat_h > y:
       resized_hat_h = y-1
     # 根据人脸大小调整帽子大小
     resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))

四、提取帽子和需要添加帽子的区域

按照之前所述,去Alpha通道作为mask。并求反。这两个mask一个用于把帽子图中的帽子区域取出来,一个用于把人物图中需要填帽子的区域空出来。后面你将会看到。

用alpha通道作为mask

mask = cv2.resize(a,(resized_hat_w,resized_hat_h))
     mask_inv = cv2.bitwise_not(mask)

从原图中取出需要添加帽子的区域,这里我们用的是位运算操作。

# 帽子相对与人脸框上线的偏移量 dh = 0 dw = 0 # 原图ROI # bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w] bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
     # 原图ROI中提取放帽子的区域
     bg_roi = bg_roi.astype(float)
     mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
     alpha = mask_inv.astype(float)/255

     # 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
     alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
     # print("alpha size: ",alpha.shape)
     # print("bg_roi size: ",bg_roi.shape)
     bg = cv2.multiply(alpha, bg_roi)
     bg = bg.astype('uint8')

这是的背景区域(bg)如下图所示。可以看到,刚好是需要填充帽子的区域缺失了。

使用Python给头像戴上圣诞帽的图像操作过程解析

然后我们提取帽子区域。

# 提取帽子区域 hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)

提取得到的帽子区域如下图。帽子区域正好与上一个背景区域互补。

使用Python给头像戴上圣诞帽的图像操作过程解析

五、添加圣诞帽

最后我们把两个区域相加。再放回到原图中去,就可以得到我们想要的圣诞帽图了。这里需要注意的就是,相加之前resize一下保证两者大小一致,因为可能会由于四舍五入原因不一致。

# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致) hat = cv2.resize(hat,(bg_roi.shape1,bg_roi.shape[0])) # 两个ROI区域相加 add_hat = cv2.add(bg,hat) # cv2.imshow("add_hat",add_hat)
     # 把添加好帽子的区域放回原图
     img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat

最后我们得到的效果图如下所示。

使用Python给头像戴上圣诞帽的图像操作过程解析

源码地址:https://github.com/LiuXiaolong19920720/Add-Christmas-Hat

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现把utf-8格式的文件转换成gbk格式的文件
Jan 22 Python
浅谈MySQL中的触发器
May 05 Python
python使用turtle绘制分形树
Jun 22 Python
python处理数据,存进hive表的方法
Jul 04 Python
python 字典 按key值大小 倒序取值的实例
Jul 06 Python
python paramiko利用sftp上传目录到远程的实例
Jan 03 Python
python实现图片转字符小工具
Apr 30 Python
Python面向对象之继承和多态用法分析
Jun 08 Python
Python把图片转化为pdf代码实例
Jul 28 Python
Python 保存加载mat格式文件的示例代码
Aug 04 Python
Python如何使用vars返回对象的属性列表
Oct 17 Python
解决python3中os.popen()出错的问题
Nov 19 Python
Python 函数用法简单示例【定义、参数、返回值、函数嵌套】
Sep 20 #Python
Python 50行爬虫抓取并处理图灵书目过程详解
Sep 20 #Python
使用python获取邮箱邮件的设置方法
Sep 20 #Python
Python中的上下文管理器相关知识详解
Sep 19 #Python
Python Opencv提取图片中某种颜色组成的图形的方法
Sep 19 #Python
pandas read_excel()和to_excel()函数解析
Sep 19 #Python
python openvc 裁剪、剪切图片 提取图片的行和列
Sep 19 #Python
You might like
kohana框架上传文件验证规则写法示例
2014/07/14 PHP
PHP输出两个数字中间有多少个回文数的方法
2015/03/23 PHP
详细解读php的命名空间(一)
2018/02/21 PHP
PHP实现带进度条的Ajax文件上传功能示例
2019/07/02 PHP
javascript showModalDialog 多层模态窗口实现页面提交及刷新的代码
2009/11/28 Javascript
javascript-表格排序(降序/反序)实现介绍(附图)
2013/05/30 Javascript
JavaScript闭包实例讲解
2014/04/22 Javascript
javascript 获取HTML DOM父、子、临近节点
2014/06/16 Javascript
Bootstrap组件学习之导航、标签、面包屑导航(精品)
2016/05/17 Javascript
JavaScript中实现键值对应的字典与哈希表结构的示例
2016/06/12 Javascript
JavaScript自定义浏览器滚动条兼容IE、 火狐和chrome
2017/01/05 Javascript
.net MVC+Bootstrap下使用localResizeIMG上传图片
2017/04/21 Javascript
详解使用Visual Studio Code对Node.js进行断点调试
2017/09/14 Javascript
微信小程序如何实现全局重新加载
2019/06/05 Javascript
解决vue初始化项目时,一直卡在Project description上的问题
2019/10/31 Javascript
Echarts.js无法引入问题解决方案
2020/10/30 Javascript
[01:21:07]EG vs Liquid 2018国际邀请赛淘汰赛BO3 第一场 8.25
2018/08/29 DOTA
[01:39:04]DOTA2-DPC中国联赛 正赛 SAG vs CDEC BO3 第二场 2月1日
2021/03/11 DOTA
Python中每次处理一个字符的5种方法
2015/05/21 Python
Python中绑定与未绑定的类方法用法分析
2016/04/29 Python
python3 实现验证码图片切割的方法
2018/12/07 Python
python pands实现execl转csv 并修改csv指定列的方法
2018/12/12 Python
Python分布式进程中你会遇到的问题解析
2019/05/28 Python
详解python实现数据归一化处理的方式:(0,1)标准化
2019/07/17 Python
Python 使用 Pillow 模块给图片添加文字水印的方法
2019/08/30 Python
pytorch使用tensorboardX进行loss可视化实例
2020/02/24 Python
基于Keras 循环训练模型跑数据时内存泄漏的解决方式
2020/06/11 Python
Linden Leaves官网:新西兰纯净护肤品
2020/12/20 全球购物
高一自我鉴定
2013/12/17 职场文书
入党积极分子介绍信
2014/01/17 职场文书
听课评语大全
2014/04/30 职场文书
反腐倡廉警示教育活动总结
2014/05/05 职场文书
办理收楼委托书范本
2014/10/09 职场文书
2014年中职班主任工作总结
2014/12/16 职场文书
员工工作表扬信
2015/05/05 职场文书
pytorch DataLoader的num_workers参数与设置大小详解
2021/05/28 Python