Posted in Python onFebruary 20, 2020
原因
对于一些含有batch normalization或者是Dropout层的模型来说,训练时的froward和验证时的forward有计算上是不同的,因此在前向传递过程中需要指定模型是在训练还是在验证。
源代码
[docs] def train(self, mode=True): r"""Sets the module in training mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc. Returns: Module: self """ self.training = mode for module in self.children(): module.train(mode) return self [docs] def eval(self): r"""Sets the module in evaluation mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc. """ #该方法调用了nn.train()方法,把参数默认值改为false. 增加聚合性 return self.train(False)
在使用含有BN层,dropout层的神经网路来说,必须要区分训练和验证
以上这篇pytorch 模型的train模式与eval模式实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pytorch 模型的train模式与eval模式实例
- Author -
rasekk声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@