OpenCV实现常见的四种图像几何变换


Posted in Python onApril 01, 2022

准备图片

选择一张shape为(500,500,3)的梵高的《星月夜》以便示例。

OpenCV实现常见的四种图像几何变换

1. 缩放 cv2.resize()方法

cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)

src 原图(的数组)

dsize: 输出图像的大小 格式:(a,b)。

设定dsize后就无需再设置fx和fy

fx 可选参数 水平方向缩放比

fy 可选参数 垂直方向缩放比

fx和fy不同于dsize,fx和fy是各是一个比值,如设为2,则表示放大2倍,设为1/2则表示缩小到原来的1/2

import cv2
img = cv2.imread("The_Starry_Night.jpg")

dst1 = cv2.resize(img, (200, 200))
dst2 = cv2.resize(img, (900, 900))
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

执行结果如图所示,相比原图,图像得到了指定大小的缩小与放大。

OpenCV实现常见的四种图像几何变换

使用fx和fy参数,则需要手动把dsize设为None。

import cv2
img = cv2.imread("The_Starry_Night.jpg")  
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2) 
# 将宽高扩大2倍
dst4 = cv2.resize(img, None, fx=2, fy=2)  
cv2.imshow("img", img)
cv2.imshow("dst3", dst3) 
cv2.imshow("dst4", dst4) 
cv2.waitKey() 
cv2.destroyAllWindows()

结果呈现:

OpenCV实现常见的四种图像几何变换

2. 翻转 cv2.flip()方法

flip(src, flipCode, dst=None)

src 图像(数组)

flipCode 翻转代码。可以是0,正数,负数。0表示沿X轴(水平方向的轴)翻转。1表示沿Y轴(竖直方向的轴)翻转。

负数表示同时沿X轴和Y轴翻转。

讲原图经过着三种翻转后,与原图拼在一块,呈现出了这种奇观:

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

将翻转结果放在同一张画布中

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
a, b, c = img.shape
canvas = np.ones((2 * a, 2 * b, c), np.uint8) * 255
canvas[0:b, 0:a] = img
canvas[b:2*b, 0:a] = dst1
canvas[0:b, a:2*a] = dst2
canvas[b:2*b, a:2*a] = dst3
cv2.imshow("pic", canvas)
cv2.waitKey()
cv2.destroyAllWindows()
# 保存图片
# cv2.imwrite("final_pic", canvas)

结果呈现:

OpenCV实现常见的四种图像几何变换

3. 仿射变换 warpAffine()方法

常见的仿射变换有平移,旋转和倾斜变换。

仿射变换使用cv2.warpAffine()方法完成

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)

src 原图

M 是一个二行三列的矩阵,也称仿射矩阵。warpAffine方法根据此矩阵的值来变换像素的位置。

M = [[a, b, c], [d, e, f]],则像素的变换公式为:

X = x × a + y × b + c

Y = x × d + y × e + f

其中x,y指原像素的x、y轴坐标。X,Y指变换后的X,Y坐标。

dsize 输出图像的尺寸。(不带放缩,增大的部分用黑色色素(0)填充)

这三个参数是常用的参数。其余参数建议使用默认值。

flags表示插入方式,borderMode是边界类型,borderValue表示边界值(默认0)。dst表示反射变换后输出的图像。

3.1 平移

以将《星月夜》向左平移50个像素,向下平移100个像素为例。

则M数组应写为[[1, 0, 50], [0, 1, 100]]:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]]) 
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

如图所示,图像按照我们的预期成功被平移。

只是这样得到的图像有色素损失,我们丢失了超出画布之外的数据。

为了避免损失,可以取设置dsize参数来控制输出图像的大小。

修改后的代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]])
dst = cv2.warpAffine(img, M, (cols+200, rows+200))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

优化后的程序执行效果:

OpenCV实现常见的四种图像几何变换

3.2 旋转

旋转也是通过M矩阵来实现的,这个矩阵的运算较复杂,

OpenCV提供了getRotationMatrix2D()方法来计算旋转操作的M矩阵

getRotationMatrix2D(center, angle, scale)

center 指旋转中心的坐标

angle指旋转的角度

scale值缩放的比例。(旋转过程支持缩放)

import cv2
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img) 
cols = len(img[0]) 
center = (rows / 2, cols / 2) 
M = cv2.getRotationMatrix2D(center, 30, 0.8) 
dst = cv2.warpAffine(img, M, (cols, rows)) 
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

旋转效果如图所示:

OpenCV实现常见的四种图像几何变换

3.3 倾斜

OpenCV需要定位到图像的三个点的位置来计算倾斜效果,即左上角,右上角和左下角。

图像的倾斜也是根据M矩阵实现,得出矩阵的运算较复杂,通过getAffineTransform 方法实现。

语法

getAffineTransform(src, dst)

src是原图像的左上角,右上角和左下角三个点的坐标。三维数组格式,形如[[a, b], [c, d], [e, f]]。

dst是倾斜后这三个点预期的坐标。格式同上。

要保持左上,右下,左下三个点的顺序不能乱。

以将《星月夜》保持左下角和右上角坐标不变,左上角((0,0)处)向右移动150个像素长度。

代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
p1 = np.array([[0, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
p2 = np.array([[150, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行效果如下:

OpenCV实现常见的四种图像几何变换

4. 透视

透视的实现使用的是warpPerspective()方法,而不再是用于平移、旋转、倾斜的warpAffine()方法。

使用warpPerspective()方法也需要通过M矩阵来计算透视效果,计算透视的M矩阵可以使用getPerspectiveTransform()方法。

getPerspectiveTransform(src, dst, solveMethod=None)

该方法常用的参数有两个,分别为原图的四个点的坐标(scr) 和 透视后四个点的坐标(dst)。Opcv需要通过定位图像的这四个点来计算透视效果。四个点依次为左上,右上,左下,右下。

坐标格式为二维数组格式,形如[[a, b],[c, d],[e, f],[g, h]]。

示例代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
# 原图的四点坐标
p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
# 透视后的四点坐标
p2 = np.zeros((4, 2), np.float32)
p2[0] = [150, 0]
p2[1] = [cols - 150, 0]
p2[2] = [0, rows - 1]  # 不变
p2[3] = [cols - 1, rows - 1]  # 不变
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow('The_Starry_Night', img)
cv2.imshow('The_Starry_Night2', dst)
cv2.waitKey()
cv2.destroyAllWindows()

展示原图和透视后的图像效果:

OpenCV实现常见的四种图像几何变换

到此这篇关于OpenCV实现常见的四种图像几何变换的文章就介绍到这了,更多相关OpenCV图像几何变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中 ? : 三元表达式的使用介绍
Oct 09 Python
python用来获得图片exif信息的库实例分析
Mar 16 Python
详解Python中的Cookie模块使用
Jul 06 Python
Python构建XML树结构的方法示例
Jun 30 Python
Python内置模块ConfigParser实现配置读写功能的方法
Feb 12 Python
浅谈python str.format与制表符\t关于中文对齐的细节问题
Jan 14 Python
Python企业编码生成系统之主程序模块设计详解
Jul 26 Python
Django ImageFiled上传照片并显示的方法
Jul 28 Python
基于python分析你的上网行为 看看你平时上网都在干嘛
Aug 13 Python
python 实现单例模式的5种方法
Sep 23 Python
python try...finally...的实现方法
Nov 25 Python
Python-OpenCV实现图像缺陷检测的实例
Jun 11 Python
关于Python使用turtle库画任意图的问题
Apr 01 #Python
python套接字socket通信
python文件与路径操作神器 pathlib
Python下载商品数据并连接数据库且保存数据
Python turtle编写简单的球类小游戏
Pandas实现DataFrame的简单运算、统计与排序
Mar 31 #Python
Pandas数据结构之Series的使用
Mar 31 #Python
You might like
使用PHP实现蜘蛛访问日志统计
2013/07/05 PHP
php中convert_uuencode()与convert_uuencode函数用法实例
2014/11/22 PHP
php使用curl获取https请求的方法
2015/02/11 PHP
了解一点js的Eval函数
2012/07/26 Javascript
JavaScript中判断对象类型的几种方法总结
2013/11/11 Javascript
input链接页面、打开新网页等等的具体实现
2013/12/30 Javascript
jQuery取id有.的值的方法
2014/05/21 Javascript
js/jquery判断浏览器的方法小结
2014/09/02 Javascript
告诉你什么是javascript的回调函数
2014/09/04 Javascript
JQuery插件ajaxfileupload.js异步上传文件实例
2015/05/19 Javascript
JavaScript获取浏览器信息的方法
2015/11/20 Javascript
jQuery实现简单弹窗遮罩效果
2017/02/27 Javascript
详解使用vue-router进行页面切换时滚动条位置与滚动监听事件
2017/03/08 Javascript
深入理解Node内建模块和对象
2019/03/12 Javascript
原生js+css调节音量滑块
2020/01/15 Javascript
vue插槽slot的简单理解与用法实例分析
2020/03/14 Javascript
[01:00]一分钟回顾2018DOTA2亚洲邀请赛现场活动
2018/04/07 DOTA
[01:10:02]IG vs Winstrike 2018国际邀请赛小组赛BO2 第一场 8.19
2018/08/21 DOTA
基于python中staticmethod和classmethod的区别(详解)
2017/10/24 Python
Python实现的银行系统模拟程序完整案例
2019/04/12 Python
解决Django layui {{}}冲突的问题
2019/08/29 Python
jupyter notebook参数化运行python方式
2020/04/10 Python
Python实现一个优先级队列的方法
2020/07/31 Python
python使用建议技巧分享(三)
2020/08/18 Python
python利用google翻译方法实例(翻译字幕文件)
2020/09/21 Python
深入理解HTML5定时器requestAnimationFrame的使用
2018/12/12 HTML / CSS
印尼旅游网站:via
2017/11/12 全球购物
NFL欧洲商店(德国):NFL Europe Shop DE
2018/11/03 全球购物
Bugatchi官方网站:男士服装在线
2019/04/10 全球购物
球队口号
2014/06/18 职场文书
工地门卫岗位职责范本
2014/07/01 职场文书
2015年党员自我剖析材料
2014/12/17 职场文书
中学校园广播稿
2015/08/18 职场文书
PyTorch 如何检查模型梯度是否可导
2021/06/05 Python
CSS中理解层叠性及权重如何分配
2022/12/24 HTML / CSS
SqlServer常用函数及时间处理小结
2023/05/08 SQL Server