OpenCV实现常见的四种图像几何变换


Posted in Python onApril 01, 2022

准备图片

选择一张shape为(500,500,3)的梵高的《星月夜》以便示例。

OpenCV实现常见的四种图像几何变换

1. 缩放 cv2.resize()方法

cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)

src 原图(的数组)

dsize: 输出图像的大小 格式:(a,b)。

设定dsize后就无需再设置fx和fy

fx 可选参数 水平方向缩放比

fy 可选参数 垂直方向缩放比

fx和fy不同于dsize,fx和fy是各是一个比值,如设为2,则表示放大2倍,设为1/2则表示缩小到原来的1/2

import cv2
img = cv2.imread("The_Starry_Night.jpg")

dst1 = cv2.resize(img, (200, 200))
dst2 = cv2.resize(img, (900, 900))
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

执行结果如图所示,相比原图,图像得到了指定大小的缩小与放大。

OpenCV实现常见的四种图像几何变换

使用fx和fy参数,则需要手动把dsize设为None。

import cv2
img = cv2.imread("The_Starry_Night.jpg")  
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2) 
# 将宽高扩大2倍
dst4 = cv2.resize(img, None, fx=2, fy=2)  
cv2.imshow("img", img)
cv2.imshow("dst3", dst3) 
cv2.imshow("dst4", dst4) 
cv2.waitKey() 
cv2.destroyAllWindows()

结果呈现:

OpenCV实现常见的四种图像几何变换

2. 翻转 cv2.flip()方法

flip(src, flipCode, dst=None)

src 图像(数组)

flipCode 翻转代码。可以是0,正数,负数。0表示沿X轴(水平方向的轴)翻转。1表示沿Y轴(竖直方向的轴)翻转。

负数表示同时沿X轴和Y轴翻转。

讲原图经过着三种翻转后,与原图拼在一块,呈现出了这种奇观:

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

将翻转结果放在同一张画布中

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
a, b, c = img.shape
canvas = np.ones((2 * a, 2 * b, c), np.uint8) * 255
canvas[0:b, 0:a] = img
canvas[b:2*b, 0:a] = dst1
canvas[0:b, a:2*a] = dst2
canvas[b:2*b, a:2*a] = dst3
cv2.imshow("pic", canvas)
cv2.waitKey()
cv2.destroyAllWindows()
# 保存图片
# cv2.imwrite("final_pic", canvas)

结果呈现:

OpenCV实现常见的四种图像几何变换

3. 仿射变换 warpAffine()方法

常见的仿射变换有平移,旋转和倾斜变换。

仿射变换使用cv2.warpAffine()方法完成

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)

src 原图

M 是一个二行三列的矩阵,也称仿射矩阵。warpAffine方法根据此矩阵的值来变换像素的位置。

M = [[a, b, c], [d, e, f]],则像素的变换公式为:

X = x × a + y × b + c

Y = x × d + y × e + f

其中x,y指原像素的x、y轴坐标。X,Y指变换后的X,Y坐标。

dsize 输出图像的尺寸。(不带放缩,增大的部分用黑色色素(0)填充)

这三个参数是常用的参数。其余参数建议使用默认值。

flags表示插入方式,borderMode是边界类型,borderValue表示边界值(默认0)。dst表示反射变换后输出的图像。

3.1 平移

以将《星月夜》向左平移50个像素,向下平移100个像素为例。

则M数组应写为[[1, 0, 50], [0, 1, 100]]:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]]) 
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

如图所示,图像按照我们的预期成功被平移。

只是这样得到的图像有色素损失,我们丢失了超出画布之外的数据。

为了避免损失,可以取设置dsize参数来控制输出图像的大小。

修改后的代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]])
dst = cv2.warpAffine(img, M, (cols+200, rows+200))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

优化后的程序执行效果:

OpenCV实现常见的四种图像几何变换

3.2 旋转

旋转也是通过M矩阵来实现的,这个矩阵的运算较复杂,

OpenCV提供了getRotationMatrix2D()方法来计算旋转操作的M矩阵

getRotationMatrix2D(center, angle, scale)

center 指旋转中心的坐标

angle指旋转的角度

scale值缩放的比例。(旋转过程支持缩放)

import cv2
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img) 
cols = len(img[0]) 
center = (rows / 2, cols / 2) 
M = cv2.getRotationMatrix2D(center, 30, 0.8) 
dst = cv2.warpAffine(img, M, (cols, rows)) 
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

旋转效果如图所示:

OpenCV实现常见的四种图像几何变换

3.3 倾斜

OpenCV需要定位到图像的三个点的位置来计算倾斜效果,即左上角,右上角和左下角。

图像的倾斜也是根据M矩阵实现,得出矩阵的运算较复杂,通过getAffineTransform 方法实现。

语法

getAffineTransform(src, dst)

src是原图像的左上角,右上角和左下角三个点的坐标。三维数组格式,形如[[a, b], [c, d], [e, f]]。

dst是倾斜后这三个点预期的坐标。格式同上。

要保持左上,右下,左下三个点的顺序不能乱。

以将《星月夜》保持左下角和右上角坐标不变,左上角((0,0)处)向右移动150个像素长度。

代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
p1 = np.array([[0, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
p2 = np.array([[150, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行效果如下:

OpenCV实现常见的四种图像几何变换

4. 透视

透视的实现使用的是warpPerspective()方法,而不再是用于平移、旋转、倾斜的warpAffine()方法。

使用warpPerspective()方法也需要通过M矩阵来计算透视效果,计算透视的M矩阵可以使用getPerspectiveTransform()方法。

getPerspectiveTransform(src, dst, solveMethod=None)

该方法常用的参数有两个,分别为原图的四个点的坐标(scr) 和 透视后四个点的坐标(dst)。Opcv需要通过定位图像的这四个点来计算透视效果。四个点依次为左上,右上,左下,右下。

坐标格式为二维数组格式,形如[[a, b],[c, d],[e, f],[g, h]]。

示例代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
# 原图的四点坐标
p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
# 透视后的四点坐标
p2 = np.zeros((4, 2), np.float32)
p2[0] = [150, 0]
p2[1] = [cols - 150, 0]
p2[2] = [0, rows - 1]  # 不变
p2[3] = [cols - 1, rows - 1]  # 不变
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow('The_Starry_Night', img)
cv2.imshow('The_Starry_Night2', dst)
cv2.waitKey()
cv2.destroyAllWindows()

展示原图和透视后的图像效果:

OpenCV实现常见的四种图像几何变换

到此这篇关于OpenCV实现常见的四种图像几何变换的文章就介绍到这了,更多相关OpenCV图像几何变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用Python的Supervisor进行进程监控以及自动启动
May 29 Python
在Python下尝试多线程编程
Apr 28 Python
在Python中操作时间之strptime()方法的使用
Dec 30 Python
python中单例常用的几种实现方法总结
Oct 13 Python
Python重新加载模块的实现方法
Oct 16 Python
值得收藏的10道python 面试题
Apr 15 Python
python 实现保存最新的三份文件,其余的都删掉
Dec 22 Python
PHP基于phpqrcode类库生成二维码过程解析
May 28 Python
python交互模式基础知识点学习
Jun 18 Python
python实现将中文日期转换为数字日期
Jul 14 Python
selenium3.0+python之环境搭建的方法步骤
Feb 01 Python
matplotlib之属性组合包(cycler)的使用
Feb 24 Python
关于Python使用turtle库画任意图的问题
Apr 01 #Python
python套接字socket通信
python文件与路径操作神器 pathlib
Python下载商品数据并连接数据库且保存数据
Python turtle编写简单的球类小游戏
Pandas实现DataFrame的简单运算、统计与排序
Mar 31 #Python
Pandas数据结构之Series的使用
Mar 31 #Python
You might like
PHP在Web开发领域的优势
2006/10/09 PHP
php邮件发送,php发送邮件的类
2011/03/24 PHP
一个典型的PHP分页实例代码分享
2011/07/28 PHP
php对文件进行hash运算的方法
2015/04/03 PHP
对laravel in 查询的使用方法详解
2019/10/09 PHP
Ajax一统天下之Dojo整合篇
2007/03/24 Javascript
combox改进版 页面原型参考dojo的,比网上jQuery的那些combox功能强,代码更小
2010/04/15 Javascript
jQuery实现的类flash菜单效果代码
2010/05/17 Javascript
JavaScript基础篇之变量作用域、传值、传址的简单介绍与实例
2013/06/29 Javascript
JS 实现点击a标签的时候让其背景更换
2013/10/15 Javascript
jquery简单实现鼠标经过导航条改变背景图
2013/12/17 Javascript
用nodeJS搭建本地文件服务器的几种方法小结
2017/03/16 NodeJs
angularjs 获取默认选中的单选按钮的value方法
2018/02/28 Javascript
NodeJS安装图文教程
2018/04/19 NodeJs
vue-cli 引入jQuery,Bootstrap,popper的方法
2018/09/03 jQuery
vue 优化CDN加速的方法示例
2018/09/19 Javascript
JQuery获取元素尺寸、位置及页面滚动事件应用示例
2019/05/14 jQuery
React+Redux实现简单的待办事项列表ToDoList
2019/09/29 Javascript
python实现数独算法实例
2015/06/09 Python
Python 多线程抓取图片效率对比
2016/02/27 Python
用Python写一个无界面的2048小游戏
2016/05/24 Python
Selenium 模拟浏览器动态加载页面的实现方法
2018/05/16 Python
python smtplib模块自动收发邮件功能(二)
2018/05/22 Python
python使用turtle库绘制时钟
2020/03/25 Python
Python socket套接字实现C/S模式远程命令执行功能案例
2018/07/06 Python
django 中使用DateTime常用的时间查询方式
2019/12/03 Python
详解PyQt5信号与槽的几种高级玩法
2020/03/24 Python
CSS3 Pie工具推荐--让IE6-8支持一些优秀的CSS3特性
2014/09/02 HTML / CSS
Derek Rose官网:英国高档睡衣、家居服和内衣品牌
2020/01/18 全球购物
教师学期个人总结
2015/02/11 职场文书
2015年女生节活动总结
2015/02/27 职场文书
教学质量月活动总结
2015/05/11 职场文书
导游带团欢迎词
2015/09/30 职场文书
观看安全警示教育片心得体会
2016/01/15 职场文书
一看就懂的MySQL的聚簇索引及聚簇索引是如何长高的
2021/05/25 MySQL
微信小程序调用python模型
2022/04/21 Python