OpenCV实现常见的四种图像几何变换


Posted in Python onApril 01, 2022

准备图片

选择一张shape为(500,500,3)的梵高的《星月夜》以便示例。

OpenCV实现常见的四种图像几何变换

1. 缩放 cv2.resize()方法

cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)

src 原图(的数组)

dsize: 输出图像的大小 格式:(a,b)。

设定dsize后就无需再设置fx和fy

fx 可选参数 水平方向缩放比

fy 可选参数 垂直方向缩放比

fx和fy不同于dsize,fx和fy是各是一个比值,如设为2,则表示放大2倍,设为1/2则表示缩小到原来的1/2

import cv2
img = cv2.imread("The_Starry_Night.jpg")

dst1 = cv2.resize(img, (200, 200))
dst2 = cv2.resize(img, (900, 900))
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

执行结果如图所示,相比原图,图像得到了指定大小的缩小与放大。

OpenCV实现常见的四种图像几何变换

使用fx和fy参数,则需要手动把dsize设为None。

import cv2
img = cv2.imread("The_Starry_Night.jpg")  
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2) 
# 将宽高扩大2倍
dst4 = cv2.resize(img, None, fx=2, fy=2)  
cv2.imshow("img", img)
cv2.imshow("dst3", dst3) 
cv2.imshow("dst4", dst4) 
cv2.waitKey() 
cv2.destroyAllWindows()

结果呈现:

OpenCV实现常见的四种图像几何变换

2. 翻转 cv2.flip()方法

flip(src, flipCode, dst=None)

src 图像(数组)

flipCode 翻转代码。可以是0,正数,负数。0表示沿X轴(水平方向的轴)翻转。1表示沿Y轴(竖直方向的轴)翻转。

负数表示同时沿X轴和Y轴翻转。

讲原图经过着三种翻转后,与原图拼在一块,呈现出了这种奇观:

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

将翻转结果放在同一张画布中

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
a, b, c = img.shape
canvas = np.ones((2 * a, 2 * b, c), np.uint8) * 255
canvas[0:b, 0:a] = img
canvas[b:2*b, 0:a] = dst1
canvas[0:b, a:2*a] = dst2
canvas[b:2*b, a:2*a] = dst3
cv2.imshow("pic", canvas)
cv2.waitKey()
cv2.destroyAllWindows()
# 保存图片
# cv2.imwrite("final_pic", canvas)

结果呈现:

OpenCV实现常见的四种图像几何变换

3. 仿射变换 warpAffine()方法

常见的仿射变换有平移,旋转和倾斜变换。

仿射变换使用cv2.warpAffine()方法完成

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)

src 原图

M 是一个二行三列的矩阵,也称仿射矩阵。warpAffine方法根据此矩阵的值来变换像素的位置。

M = [[a, b, c], [d, e, f]],则像素的变换公式为:

X = x × a + y × b + c

Y = x × d + y × e + f

其中x,y指原像素的x、y轴坐标。X,Y指变换后的X,Y坐标。

dsize 输出图像的尺寸。(不带放缩,增大的部分用黑色色素(0)填充)

这三个参数是常用的参数。其余参数建议使用默认值。

flags表示插入方式,borderMode是边界类型,borderValue表示边界值(默认0)。dst表示反射变换后输出的图像。

3.1 平移

以将《星月夜》向左平移50个像素,向下平移100个像素为例。

则M数组应写为[[1, 0, 50], [0, 1, 100]]:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]]) 
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

OpenCV实现常见的四种图像几何变换

如图所示,图像按照我们的预期成功被平移。

只是这样得到的图像有色素损失,我们丢失了超出画布之外的数据。

为了避免损失,可以取设置dsize参数来控制输出图像的大小。

修改后的代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
M = np.float32([[1, 0, 50],
                [0, 1, 100]])
dst = cv2.warpAffine(img, M, (cols+200, rows+200))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()

优化后的程序执行效果:

OpenCV实现常见的四种图像几何变换

3.2 旋转

旋转也是通过M矩阵来实现的,这个矩阵的运算较复杂,

OpenCV提供了getRotationMatrix2D()方法来计算旋转操作的M矩阵

getRotationMatrix2D(center, angle, scale)

center 指旋转中心的坐标

angle指旋转的角度

scale值缩放的比例。(旋转过程支持缩放)

import cv2
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img) 
cols = len(img[0]) 
center = (rows / 2, cols / 2) 
M = cv2.getRotationMatrix2D(center, 30, 0.8) 
dst = cv2.warpAffine(img, M, (cols, rows)) 
cv2.imshow("img", img) 
cv2.imshow("dst", dst) 
cv2.waitKey() 
cv2.destroyAllWindows()

旋转效果如图所示:

OpenCV实现常见的四种图像几何变换

3.3 倾斜

OpenCV需要定位到图像的三个点的位置来计算倾斜效果,即左上角,右上角和左下角。

图像的倾斜也是根据M矩阵实现,得出矩阵的运算较复杂,通过getAffineTransform 方法实现。

语法

getAffineTransform(src, dst)

src是原图像的左上角,右上角和左下角三个点的坐标。三维数组格式,形如[[a, b], [c, d], [e, f]]。

dst是倾斜后这三个点预期的坐标。格式同上。

要保持左上,右下,左下三个点的顺序不能乱。

以将《星月夜》保持左下角和右上角坐标不变,左上角((0,0)处)向右移动150个像素长度。

代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
p1 = np.array([[0, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
p2 = np.array([[150, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32)
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()

程序执行效果如下:

OpenCV实现常见的四种图像几何变换

4. 透视

透视的实现使用的是warpPerspective()方法,而不再是用于平移、旋转、倾斜的warpAffine()方法。

使用warpPerspective()方法也需要通过M矩阵来计算透视效果,计算透视的M矩阵可以使用getPerspectiveTransform()方法。

getPerspectiveTransform(src, dst, solveMethod=None)

该方法常用的参数有两个,分别为原图的四个点的坐标(scr) 和 透视后四个点的坐标(dst)。Opcv需要通过定位图像的这四个点来计算透视效果。四个点依次为左上,右上,左下,右下。

坐标格式为二维数组格式,形如[[a, b],[c, d],[e, f],[g, h]]。

示例代码如下:

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
rows = len(img)
cols = len(img[0])
# 原图的四点坐标
p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
# 透视后的四点坐标
p2 = np.zeros((4, 2), np.float32)
p2[0] = [150, 0]
p2[1] = [cols - 150, 0]
p2[2] = [0, rows - 1]  # 不变
p2[3] = [cols - 1, rows - 1]  # 不变
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow('The_Starry_Night', img)
cv2.imshow('The_Starry_Night2', dst)
cv2.waitKey()
cv2.destroyAllWindows()

展示原图和透视后的图像效果:

OpenCV实现常见的四种图像几何变换

到此这篇关于OpenCV实现常见的四种图像几何变换的文章就介绍到这了,更多相关OpenCV图像几何变换内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python 算法 排序实现快速排序
Jun 05 Python
python实现DNS正向查询、反向查询的例子
Apr 25 Python
跟老齐学Python之画圈还不简单吗?
Sep 20 Python
进一步探究Python的装饰器的运用
May 05 Python
python使用clear方法清除字典内全部数据实例
Jul 11 Python
基于Python开发chrome插件的方法分析
Jul 07 Python
python程序控制NAO机器人行走
Apr 29 Python
详解Numpy中的数组拼接、合并操作(concatenate, append, stack, hstack, vstack, r_, c_等)
May 27 Python
Python3.5以上版本lxml导入etree报错的解决方案
Jun 26 Python
解决安装新版PyQt5、PyQT5-tool后打不开并Designer.exe提示no Qt platform plugin的问题
Apr 24 Python
pytorch中的weight-initilzation用法
Jun 24 Python
pycharm debug 断点调试心得分享
Apr 16 Python
关于Python使用turtle库画任意图的问题
Apr 01 #Python
python套接字socket通信
python文件与路径操作神器 pathlib
Python下载商品数据并连接数据库且保存数据
Python turtle编写简单的球类小游戏
Pandas实现DataFrame的简单运算、统计与排序
Mar 31 #Python
Pandas数据结构之Series的使用
Mar 31 #Python
You might like
php 多关键字 高亮显示实现代码
2012/04/23 PHP
php实现水印文字和缩略图的方法示例
2016/12/29 PHP
Laravel框架分页实现方法分析
2018/06/12 PHP
PHP下载文件函数与用法示例
2019/09/27 PHP
laravel 解决groupBy时出现的错误 isn't in Group By问题
2019/10/17 PHP
【经典源码收藏】jQuery实用代码片段(筛选,搜索,样式,清除默认值,多选等)
2016/06/07 Javascript
深入分析node.js的异步API和其局限性
2016/09/05 Javascript
Angular2表单自定义验证器的实现
2016/10/19 Javascript
jQuery网页定位导航特效实现方法
2016/12/19 Javascript
ES6中参数的默认值语法介绍
2017/05/03 Javascript
Django与Vue语法的冲突问题完美解决方法
2017/12/14 Javascript
js实现点击上传图片并设为模糊背景
2020/08/02 Javascript
vue 使用vant插件做tabs切换和无限加载功能的实现
2020/11/04 Javascript
[01:35]辉夜杯战队访谈宣传片—iG.V
2015/12/25 DOTA
python实现删除文件与目录的方法
2014/11/10 Python
一篇文章入门Python生态系统(Python新手入门指导)
2015/12/11 Python
Python使用pandas处理CSV文件的实例讲解
2018/06/22 Python
python写程序统计词频的方法
2019/07/29 Python
详解python pandas 分组统计的方法
2019/07/30 Python
python用Configobj模块读取配置文件
2020/09/26 Python
Python字典dict常用方法函数实例
2020/11/09 Python
详解background属性的8个属性值(面试题)
2020/11/02 HTML / CSS
HTML5 微格式和相关的属性名称
2010/02/10 HTML / CSS
洛杉矶健身中心女性专用运动服饰品牌:Marika
2018/05/09 全球购物
Farnell德国:电子元器件供应商
2018/07/10 全球购物
英语翻译系毕业生求职信
2013/09/29 职场文书
网络书店创业计划书
2014/02/07 职场文书
电视购物广告词
2014/03/19 职场文书
励志演讲稿200字
2014/08/21 职场文书
医院见习报告范文
2014/11/03 职场文书
外国人来华邀请函
2015/01/31 职场文书
小学少先队活动总结
2015/05/08 职场文书
学校捐款活动总结
2015/05/09 职场文书
Nginx解决403 forbidden的完整步骤
2021/04/01 Servers
Windows10下安装MySQL8
2021/04/06 MySQL
提取视频中的音频 Python只需要三行代码!
2021/05/10 Python