python生成器与迭代器详解


Posted in Python onJanuary 01, 2019

列表生成式:

例一:

a = [i+1 for i in range(10)]
print(a)

输出:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

例二:

L = [1, 2, 3, 4, 5]
print([i*i for i in L if i>3])

输出:

[16, 25]

例三:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
print([i*a for i in L for a in I if i > 2 if a < 8])

输出:

[18, 21, 24, 28, 30, 35]

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

示例:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(g)

输出:

<generator object <genexpr> at 0x00000276586C1F48>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,可以通过generator的next()方法

next(g)

例一:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(next(g))
print(next(g))
print(next(g))

输出:

6
7
8

例二:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I if i > 2 if a < 8)
print(next(g))
print(next(g))
print(next(g))

输出:

18
21
24

因为generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。正确的方法是使用for循环,因为generator也是可迭代对象:

例三:

g = (i*i for i in range(0, 5))
for i in g:
    print(i)

当我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)
1
1
2
3
5
8

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
  n,a,b = 0,0,1

  while n < max:
    #print(b)
    yield b
    a,b = b,a+b

    n += 1

  return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'
print(fib(5))

输出:

<generator object fib at 0x0000023DC66C1F48>

调用方法:   ##但是用for循环调用generator时,\
            ##发现拿不到generator的return语句\
            ##的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

for i in fib(5):
    print(i)

输出:

1
1
2
3
5

或者:

date = fib(5)
print(date.__next__())
print(date.__next__())
print(date.__next__())
print('test')
print(date.__next__())
print(date.__next__())

输出:

1
1
2
test
3
5

send方法有一个参数,该参数指定的是上一次被挂起的yield语句的返回值

还可通过yield实现在单线程的情况下实现并发运算的效果

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import time
def consumer(name):
  print("%s 准备吃包子啦!" %name)
  while True:
    baozi = yield

    print("包子[%s]来了,被[%s]吃了!" %(baozi,name))


def producer(name):
  c = consumer('A')
  c2 = consumer('B')
  c.__next__()
  c2.__next__()
  print("老子开始准备做包子啦!")
  for i in range(10):
    time.sleep(1)
    print("做了2个包子!")
    c.send(i)
    c2.send(i)

producer("alex")

通过生成器实现协程并行运算

迭代器:

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

Python 相关文章推荐
Python聚类算法之凝聚层次聚类实例分析
Nov 20 Python
Python利用ElementTree模块处理XML的方法详解
Aug 31 Python
Python+tkinter使用40行代码实现计算器功能
Jan 30 Python
Python结合ImageMagick实现多张图片合并为一个pdf文件的方法
Apr 24 Python
Python解决走迷宫问题算法示例
Jul 27 Python
python实现n个数中选出m个数的方法
Nov 13 Python
python实现多进程通信实例分析
Sep 01 Python
解决pyCharm中 module 调用失败的问题
Feb 12 Python
Python matplotlib模块及柱状图用法解析
Aug 10 Python
Python3合并两个有序数组代码实例
Aug 11 Python
python 爬虫爬取京东ps4售卖情况
Dec 18 Python
PyTorch dropout设置训练和测试模式的实现
May 27 Python
使用python3实现操作串口详解
Jan 01 #Python
python实现生成字符串大小写字母和数字的各种组合
Jan 01 #Python
python 内置模块详解
Jan 01 #Python
python配置grpc环境
Jan 01 #Python
python制作mysql数据迁移脚本
Jan 01 #Python
在python中将字符串转为json对象并取值的方法
Dec 31 #Python
对python中Json与object转化的方法详解
Dec 31 #Python
You might like
《星际争霸》各版本雷兽特点图文解析 雷兽不同形态一览
2020/03/02 星际争霸
解析php中的escape函数
2013/06/29 PHP
php实现最简单的MVC框架实例教程
2014/09/08 PHP
利用Homestead快速运行一个Laravel项目的方法详解
2017/11/14 PHP
修改Laravel自带的认证系统的User类的命名空间的步骤
2019/10/15 PHP
判断是否输入完毕再激活提交按钮
2006/06/26 Javascript
关于Blog顶部的滚动导航条代码
2006/09/25 Javascript
js中onload与onunload的使用示例
2013/08/25 Javascript
浅谈JSON和JSONP区别及jQuery的ajax jsonp的使用
2014/11/23 Javascript
Jquery对新插入的节点 绑定Click事件失效的解决方法
2016/06/02 Javascript
JavaScript中访问id对象 属性的方式访问属性(实例代码)
2016/10/28 Javascript
JS图片压缩(pc端和移动端都适用)
2017/01/12 Javascript
使用Xcache缓存器加速PHP网站的配置方法
2017/04/22 Javascript
Vue.js移动端左滑删除组件的实现代码
2017/09/08 Javascript
vue2.0 父组件给子组件传递数据的方法
2018/01/15 Javascript
微信小程序scroll-view组件实现滚动动画
2018/01/31 Javascript
VSCode搭建Vue项目的方法
2020/04/30 Javascript
原生JS实现无缝轮播图片
2020/06/24 Javascript
vue项目打包后请求地址错误/打包后跨域操作
2020/11/04 Javascript
vue常用高阶函数及综合实例
2021/02/25 Vue.js
python 时间信息“2018-02-04 18:23:35“ 解析成字典形式的结果代码详解
2018/04/19 Python
python 根据时间来生成唯一的字符串方法
2019/01/14 Python
Python中使用pypdf2合并、分割、加密pdf文件的代码详解
2019/05/21 Python
python itchat给指定联系人发消息的方法
2019/06/11 Python
Python定时发送天气预报邮件代码实例
2019/09/09 Python
OpenCV里的imshow()和Matplotlib.pyplot的imshow()的实现
2019/11/25 Python
Flask之pipenv虚拟环境的实现
2019/11/26 Python
给keras层命名,并提取中间层输出值,保存到文档的实例
2020/05/23 Python
使用python修改文件并立即写回到原始位置操作(inplace读写)
2020/06/28 Python
使用CSS3的rem属性制作响应式页面布局的要点解析
2016/05/24 HTML / CSS
日本航空官方网站:JAL
2019/06/19 全球购物
PHP中如何使用Cookie
2015/10/28 面试题
英语专业毕业生自我鉴定
2013/11/09 职场文书
审计工作个人的自我评价
2013/12/25 职场文书
交通事故协议书范本
2014/11/18 职场文书
2015学校年度工作总结
2015/05/11 职场文书