python生成器与迭代器详解


Posted in Python onJanuary 01, 2019

列表生成式:

例一:

a = [i+1 for i in range(10)]
print(a)

输出:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

例二:

L = [1, 2, 3, 4, 5]
print([i*i for i in L if i>3])

输出:

[16, 25]

例三:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
print([i*a for i in L for a in I if i > 2 if a < 8])

输出:

[18, 21, 24, 28, 30, 35]

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

示例:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(g)

输出:

<generator object <genexpr> at 0x00000276586C1F48>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,可以通过generator的next()方法

next(g)

例一:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(next(g))
print(next(g))
print(next(g))

输出:

6
7
8

例二:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I if i > 2 if a < 8)
print(next(g))
print(next(g))
print(next(g))

输出:

18
21
24

因为generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。正确的方法是使用for循环,因为generator也是可迭代对象:

例三:

g = (i*i for i in range(0, 5))
for i in g:
    print(i)

当我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

上面的函数可以输出斐波那契数列的前N个数:

>>> fib(6)
1
1
2
3
5
8

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
  n,a,b = 0,0,1

  while n < max:
    #print(b)
    yield b
    a,b = b,a+b

    n += 1

  return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'
print(fib(5))

输出:

<generator object fib at 0x0000023DC66C1F48>

调用方法:   ##但是用for循环调用generator时,\
            ##发现拿不到generator的return语句\
            ##的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

for i in fib(5):
    print(i)

输出:

1
1
2
3
5

或者:

date = fib(5)
print(date.__next__())
print(date.__next__())
print(date.__next__())
print('test')
print(date.__next__())
print(date.__next__())

输出:

1
1
2
test
3
5

send方法有一个参数,该参数指定的是上一次被挂起的yield语句的返回值

还可通过yield实现在单线程的情况下实现并发运算的效果

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import time
def consumer(name):
  print("%s 准备吃包子啦!" %name)
  while True:
    baozi = yield

    print("包子[%s]来了,被[%s]吃了!" %(baozi,name))


def producer(name):
  c = consumer('A')
  c2 = consumer('B')
  c.__next__()
  c2.__next__()
  print("老子开始准备做包子啦!")
  for i in range(10):
    time.sleep(1)
    print("做了2个包子!")
    c.send(i)
    c2.send(i)

producer("alex")

通过生成器实现协程并行运算

迭代器:

可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

Python 相关文章推荐
简单解决Python文件中文编码问题
Nov 22 Python
python搭建虚拟环境的步骤详解
Sep 27 Python
Python3利用Dlib19.7实现摄像头人脸识别的方法
May 11 Python
浅谈Python中的全局锁(GIL)问题
Jan 11 Python
Django的models中on_delete参数详解
Jul 16 Python
python 获取sqlite3数据库的表名和表字段名的实例
Jul 17 Python
Python集成开发工具Pycharm的安装和使用详解
Mar 18 Python
Python图片处理模块PIL操作方法(pillow)
Apr 07 Python
基于Keras的格式化输出Loss实现方式
Jun 17 Python
Python Django 后台管理之后台模型属性详解
Apr 25 Python
使用pandas模块实现数据的标准化操作
May 14 Python
如何用python清洗文件中的数据
Jun 18 Python
使用python3实现操作串口详解
Jan 01 #Python
python实现生成字符串大小写字母和数字的各种组合
Jan 01 #Python
python 内置模块详解
Jan 01 #Python
python配置grpc环境
Jan 01 #Python
python制作mysql数据迁移脚本
Jan 01 #Python
在python中将字符串转为json对象并取值的方法
Dec 31 #Python
对python中Json与object转化的方法详解
Dec 31 #Python
You might like
咖啡知识大全
2021/03/03 新手入门
PHP中创建空文件的代码[file_put_contents vs touch]
2012/01/20 PHP
Django中通过定时任务触发页面静态化的处理方式
2018/08/29 PHP
js判断是否为数组的函数: isArray()
2011/10/30 Javascript
js抽奖实现随机抽奖代码效果
2013/12/02 Javascript
自己实现ajax封装示例分享
2014/04/01 Javascript
使用jQuery动态加载js脚本文件的方法
2014/04/03 Javascript
javascript中的this详解
2014/12/08 Javascript
IE下支持文本框和密码框placeholder效果的JQuery插件分享
2015/01/31 Javascript
jquery操作select方法汇总
2015/02/05 Javascript
JavaScript使用function定义对象并调用的方法
2015/03/23 Javascript
javascript实现网页字符定位的方法
2015/07/14 Javascript
canvas绘制的直线动画
2017/01/23 Javascript
javascript编写简易计算器
2017/05/06 Javascript
基于Vue实例对象的数据选项
2017/08/09 Javascript
实例分析js事件循环机制
2017/12/13 Javascript
jQuery实现的隔行变色功能【案例】
2019/02/18 jQuery
如何在微信小程序中实现Mixins方案
2019/06/20 Javascript
JS实现字体背景跑马灯
2020/01/06 Javascript
[01:45]亚洲邀请赛互动指南虚拟物品介绍
2015/01/30 DOTA
[46:43]DOTA2上海特级锦标赛主赛事日 - 1 胜者组第一轮#2LGD VS MVP.Phx第二局
2016/03/02 DOTA
跟老齐学Python之集合(set)
2014/09/24 Python
Python2.x中文乱码问题解决方法
2015/06/02 Python
python format 格式化输出方法
2018/07/16 Python
python通过tcp发送xml报文的方法
2018/12/28 Python
解决Pycharm界面的子窗口不见了的问题
2019/01/17 Python
Python如何访问字符串中的值
2020/02/09 Python
django执行数据库查询之后实现返回的结果集转json
2020/03/31 Python
Pytorch之Tensor和Numpy之间的转换的实现方法
2020/09/03 Python
canvas如何实现多张图片编辑的图片编辑器
2020/03/10 HTML / CSS
会计自我鉴定范文
2013/10/06 职场文书
家长对学生的评语
2014/04/18 职场文书
承诺书范本
2015/01/21 职场文书
MySQL中distinct和count(*)的使用方法比较
2021/05/26 MySQL
德劲DE1102数字调谐收音机机评
2022/04/07 无线电
Python+OpenCV实现图片中的圆形检测
2022/04/07 Python