Python中的协程(Coroutine)操作模块(greenlet、gevent)


Posted in Python onMay 30, 2022

一、协程介绍

协程:英文名Coroutine,是单线程下的并发,又称微线程,纤程。

协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。对比操作系统控制线程的切换,用户在单线程内控制协程的切换。

协程自己本身无法实现并发(甚至性能会降低),协程+IO切换性能提高。

1、介绍

通常程序中子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。

协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。

注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。

看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?

最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。

第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。

2、举例

Python对协程的支持是通过generator实现的。

在generator中,我们不但可以通过for循环来迭代,还可以不断调用next()函数获取由yield语句返回的下一个值。

但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。

来看例子:

传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。

如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:

def consumer():
    r = ''
    while True:
        n = yield r
        if not n:
            return
        print('[CONSUMER] Consuming %s...' % n)
        r = '200 OK'


def produce(c):
    c.send(None)
    n = 0
    while n < 5:
        n = n + 1
        print('[PRODUCER] Producing %s...' % n)
        r = c.send(n)
        print('[PRODUCER] Consumer return: %s' % r)
    c.close()


c = consumer()
produce(c)

执行结果:

[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK

注意到consumer函数是一个generator,把一个consumer传入produce后:

  • 首先调用c.send(None)启动生成器;
  • 然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
  • consumer通过yield拿到消息,处理,又通过yield把结果传回;
  • produce拿到consumer处理的结果,继续生产下一条消息;
  • produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produceconsumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。

最后套用Donald Knuth的一句话总结协程的特点:“子程序就是协程的一种特例。”

3、优点如下:

  • 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
  • 单线程内就可以实现并发的效果,最大限度地利用cpu

4、缺点如下:

  • 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
  • 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

5、总结协程特点:

  • 必须在只有一个单线程里实现并发
  • 修改共享数据不需加锁
  • 用户程序里自己保存多个控制流的上下文栈
  • 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

二、greenlet(绿叶)模块

如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换。

1、安装模块

pip3 install greenlet

2、greenlet实现状态切换

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度。

from greenlet import greenlet


def eat(name):
    print('%s eat 1' % name)
    g2.switch('nick')
    print('%s eat 2' % name)
    g2.switch()


def play(name):
    print('%s play 1' % name)
    g1.switch()
    print('%s play 2' % name)


g1 = greenlet(eat)
g2 = greenlet(play)

g1.switch('nick')  # 可以在第一次switch时传入参数,以后都不需要

3、效率对比

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2...如此,才能提高效率,这就用到了Gevent模块。

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

三、gevent模块

Gevent 是一个第三方库,可以轻松实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet,它是以C扩展模块形式接入Python的轻量级协程。

1、安装

pip3 install gevent

2、 用法介绍

g1=gevent.spawn(func,1,,2,3,x=4,y=5):# 创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
g2=gevent.spawn(func2)
g1.join():#等待g1结束
g2.join():#等待g2结束

#上述两步合成一步:
gevent.joinall([g1,g2])
g1.value
:#拿到func1的返回值

1、遇到io主动切换

import gevent

def eat(name):
    print('%s eat 1' %name)
    gevent.sleep(2)
    print('%s eat 2' %name)

def play(name):
    print('%s play 1' %name)
    gevent.sleep(1)
    print('%s play 2' %name)


g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
# 或者gevent.joinall([g1,g2])
print('主')

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了。

from gevent import monkey;monkey.patch_all()

必须放到被打补丁者的前面,如time,socket模块之前。或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头。

from gevent import monkey;monkey.patch_all()

import gevent
import time

def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

2、 查看threading.current_thread().getName()

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

from gevent import monkey;monkey.patch_all()
import threading
import gevent
import time

def eat():
    print(threading.current_thread().getName())
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print(threading.current_thread().getName())
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')

3、Gevent之同步与异步

from gevent import spawn,joinall,monkey;monkey.patch_all()

import time

def task(pid):
    """
    Some non-deterministic task
    """
    time.sleep(0.5)
    print('Task %s done' % pid)


def synchronous():  # 同步
    for i in range(10):
        task(i)

def asynchronous(): # 异步
    g_l=[spawn(task,i) for i in range(10)]
    joinall(g_l)
    print('DONE')
    
if __name__ == '__main__':
    print('Synchronous:')
    synchronous()
    print('Asynchronous:')
    asynchronous()

#  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
#  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
#  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。

4、Gevent之应用

通过gevent实现单线程下的socket并发

注意:from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞。

1、 服务端

from gevent import monkey;monkey.patch_all()
from socket import *
import gevent

#如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket()

def server(server_ip,port):
    s=socket(AF_INET,SOCK_STREAM)
    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    s.bind((server_ip,port))
    s.listen(5)
    while True:
        conn,addr=s.accept()
        gevent.spawn(talk,conn,addr)

def talk(conn,addr):
    try:
        while True:
            res=conn.recv(1024)
            print('client %s:%s msg: %s' %(addr[0],addr[1],res))
            conn.send(res.upper())
    except Exception as e:
        print(e)
    finally:
        conn.close()

if __name__ == '__main__':
    server('127.0.0.1',8080)

2、多线程并发多个客户端

from threading import Thread
from socket import *
import threading

def client(server_ip,port):
    c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
    c.connect((server_ip,port))

    count=0
    while True:
        c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
        msg=c.recv(1024)
        print(msg.decode('utf-8'))
        count+=1
if __name__ == '__main__':
    for i in range(500):
        t=Thread(target=client,args=('127.0.0.1',8080))
        t.start()

到此这篇关于Python协程操作模块的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。


Tags in this post...

Python 相关文章推荐
Python迭代用法实例教程
Sep 08 Python
linux 下实现python多版本安装实践
Nov 18 Python
python实现求两个字符串的最长公共子串方法
Jul 20 Python
Python批量生成幻影坦克图片实例代码
Jun 04 Python
详解DeBug Python神级工具PySnooper
Jul 03 Python
基于python的Paxos算法实现
Jul 03 Python
python读取ini配置的类封装代码实例
Jan 08 Python
python爬虫模块URL管理器模块用法解析
Feb 03 Python
pytorch cuda上tensor的定义 以及减少cpu的操作详解
Jun 23 Python
django中websocket的具体使用
Jan 22 Python
Python 数据可视化神器Pyecharts绘制图像练习
Feb 28 Python
Python中 range | np.arange | np.linspace三者的区别
Mar 22 Python
Pandas实现批量拆分与合并Excel的示例代码
May 30 #Python
Python实现仓库管理系统
May 30 #Python
python单向链表实例详解
May 25 #Python
利用Python实现模拟登录知乎
May 25 #Python
python双向链表实例详解
May 25 #Python
Python实现双向链表基本操作
May 25 #Python
python实现双向链表原理
May 25 #Python
You might like
解决163/sohu/sina不能够收到PHP MAIL函数发出邮件的问题
2009/03/13 PHP
完美解决:Apache启动问题―(OS 10022)提供了一个无效的参数
2013/06/08 PHP
php汉字转拼音的示例
2014/02/27 PHP
php中instanceof 与 is_a()区别分析
2015/03/03 PHP
WordPress分页伪静态加html后缀
2016/06/08 PHP
php+ajax实现异步上传文件或图片功能
2017/07/18 PHP
PHP生成(支持多模板)二维码海报代码
2018/04/30 PHP
jquery控制显示服务器生成的图片流
2015/08/04 Javascript
jQuery实现验证年龄简单思路
2016/02/24 Javascript
NestJs 静态目录配置详解
2019/03/12 Javascript
详解vue-cli+es6引入es5写的js(两种方法)
2019/04/19 Javascript
js笔试题-接收get请求参数
2019/06/15 Javascript
JavaScript创建、读取和删除cookie
2019/09/03 Javascript
javascript利用canvas实现鼠标拖拽功能
2020/07/23 Javascript
[02:06]DOTA2英雄基础教程 暗影萨满
2013/12/16 DOTA
以Flask为例讲解Python的框架的使用方法
2015/04/29 Python
Python的IDEL增加清屏功能实例
2017/06/19 Python
Python登录并获取CSDN博客所有文章列表代码实例
2017/12/28 Python
python实现textrank关键词提取
2018/06/22 Python
Python多进程入门、分布式进程数据共享实例详解
2019/06/03 Python
python常用运维脚本实例小结
2020/02/14 Python
Python爬虫获取豆瓣电影并写入excel
2020/07/31 Python
几道Java和数据库的面试题
2013/05/30 面试题
汽车运用工程系毕业生自荐信
2013/12/27 职场文书
初中英语教学反思
2014/01/25 职场文书
简历的自我评价范文
2014/02/04 职场文书
《珍珠泉》教学反思
2014/02/20 职场文书
文秘档案管理岗位职责
2014/03/06 职场文书
受伤赔偿协议书
2014/09/24 职场文书
环境卫生工作汇报材料
2014/10/28 职场文书
撤诉书怎么写
2015/05/19 职场文书
优秀的商业计划书,让融资一步到位
2019/05/07 职场文书
2019思想汇报范文
2019/05/21 职场文书
Redis字典实现、Hash键冲突及渐进式rehash详解
2021/09/04 Redis
Python实现提取PDF简历信息并存入Excel
2022/04/02 Python
全网非常详细的pytest配置文件
2022/07/15 Python