python cv2截取不规则区域图片实例


Posted in Python onDecember 21, 2019

知识掌握

cv2.threshold()函数:

设置固定级别的阈值应用于多通道矩阵,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点。

Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst

在其中:

src:表示的是图片源

thresh:表示的是阈值(起始值)

maxval:表示的是最大值

type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)

import cv2 

img = cv2.imread('1.jpg')
cv2.imshow("src", img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, dst = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("dst", dst)
cv2.waitKey(0)

python cv2截取不规则区域图片实例

cv2.findContours()函数:

查找检测物体的轮廓

cv2.findContours(image, mode, method)

opencv2返回两个值:contours:hierarchy。

注:opencv3会返回三个值,分别是img, countours, hierarchy

在其中:

image:表示的是寻找轮廓的图像;

mode:表示的是轮廓的检索模式,有四种:

cv2.RETR_EXTERNAL表示只检测外轮廓

cv2.RETR_LIST检测的轮廓不建立等级关系

cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。

cv2.RETR_TREE建立一个等级树结构的轮廓。

method:表示的是轮廓的近似办法

cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1

cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息

cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

import numpy as np 
import cv2

rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle)

img, countours, hierarchy = cv2.findContours(rectangle, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(countours)
print(hierarchy)
cv2.waitKey(0)

python cv2截取不规则区域图片实例

[array([[[ 25, 25]],
[[ 25, 275]],
[[275, 275]],
[[275, 25]]], dtype=int32)]

[[[-1 -1 -1 -1]]]

cv2.polylines函数:

绘制多边形

cv2.polylines(img, pts, isClosed, color[, thickness[, lineType[,shift]]])

首先需要顶点坐标.将这些点转换为rowsx1x2形状的数组,其中rows是顶点数,它应该是int32类型。

import numpy as np
import cv2
# Create a black image
img = np.zeros((200, 200, 3), np.uint8)

pts = np.array([[10, 5], [20, 30], [70, 20], [50, 10]], np.int32) # 每个点都是(x, y)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(img, [pts], True, (0, 255, 255))

pts = np.array([[100, 5], [150, 30], [80, 20], [90, 10]], np.int32)
cv2.polylines(img, [pts], False, (0, 255, 255))
cv2.imshow('img2', img)

cv2.waitKey()

如果第三个参数为False,您将获得连接所有点的折线,而不是闭合形状。

cv2.polylines()可用于绘制多条线.只需创建要绘制的所有行的列表并将其传递给函数, 所有线条都将单独绘制.绘制一组行比为每行调用cv2.line()要好得多,速度更快.

python cv2截取不规则区域图片实例

cv2.fillPoly)函数

可以用来填充任意形状的图型.可以用来绘制多边形,工作中也经常使用非常多个边来近似的画一条曲线.cv2.fillPoly()函数可以一次填充多个图型.

cv2.fillPoly(image,ppt,Scalar(255,255,255))

image:表示的是多边形将被画到image上

ppt:表示的是多边形的顶点集为ppt

Scalar:表示的是多边形的颜色定义为Scarlar(255,255,255),即RGB的值为白色

img = np.zeros((1080, 1920, 3), np.uint8)
area1 = np.array([[250, 200], [300, 100], [750, 800], [100, 1000]])
area2 = np.array([[1000, 200], [1500, 200], [1500, 400], [1000, 400]])
 
cv2.fillPoly(img, [area1, area2], (255, 255, 255))
 
plt.imshow(img)
plt.show()

python cv2截取不规则区域图片实例

按位操作-bitwise operations

import numpy as np 
import cv2

rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle)

circle = np.zeros((300,300),dtype="uint8")
cv2.circle(circle,(150,150),150,255,-1)
cv2.imshow("Circle",circle)

bitwiseAnd = cv2.bitwise_and(rectangle,circle)
cv2.imshow("And",bitwiseAnd)

bitwiseOr = cv2.bitwise_or(rectangle,circle)
cv2.imshow("OR",bitwiseOr)

bitwiseXor = cv2.bitwise_xor(rectangle,circle)
cv2.imshow("XOR",bitwiseXor)

bitwiseNot = cv2.bitwise_not(rectangle)
cv2.imshow("Not",bitwiseNot)
cv2.waitKey(0)

如果一个给定的像素的值大于零,那么这个像素会被打开,如果它的值为零,它就会被关闭。按位功能在这些二进制条件下运行。

AND:当且仅当两个像素都大于零时,按位AND才为真。

OR:如果两个像素中的任何一个大于零,则按位“或”为真。

XOR 异或功能:当且仅当两个像素中的任何一个大于零时,按位XOR才为真,但不是两者都是。当且仅当两个像素一个大于0一个小于0时才为真,其他都为false

NOT 取反:倒置图像中的“开”和“关”像素。

python cv2截取不规则区域图片实例

# -*- coding: utf-8 -*-
 
import cv2
import numpy as np
global img
global point1, point2
 
lsPointsChoose = []
tpPointsChoose = []
 
pointsCount = 0
count = 0 
pointsMax = 5
 
lsPointsChoose = []
tpPointsChoose = []
 
pointsCount = 0
count = 0
pointsMax = 5

 
def on_mouse(event, x, y, flags, param):
  global img, point1, point2, count, pointsMax
  global lsPointsChoose, tpPointsChoose # 存入选择的点
  global pointsCount # 对鼠标按下的点计数
  global init_img, ROI_bymouse_flag
  init_img = img.copy() # 此行代码保证每次都重新再原图画 避免画多了

  if event == cv2.EVENT_LBUTTONDOWN: # 左键点击
 
    pointsCount = pointsCount + 1
    # 为了保存绘制的区域,画的点稍晚清零
    if(pointsCount == pointsMax + 1):
      pointsCount = 0
      tpPointsChoose = []
    print('pointsCount:', pointsCount)
    point1 = (x, y)
    print (x, y)
    # 画出点击的点
    cv2.circle(init_img, point1, 10, (0, 255, 0), 5)
 
    # 将选取的点保存到list列表里
    lsPointsChoose.append([x, y]) # 用于转化为darry 提取多边形ROI
    tpPointsChoose.append((x, y)) # 用于画点

    # 将鼠标选的点用直线链接起来
    print(len(tpPointsChoose))
    for i in range(len(tpPointsChoose) - 1):
      cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
    # 点击到pointMax时可以提取去绘图
    if(pointsCount == pointsMax):
      # 绘制感兴趣区域
      ROI_byMouse()
      ROI_bymouse_flag = 1
      lsPointsChoose = []
 
    cv2.imshow('src', init_img)
    
  # 右键按下清除轨迹
  if event == cv2.EVENT_RBUTTONDOWN: # 右键点击
    print("right-mouse")
    pointsCount = 0
    tpPointsChoose = []
    lsPointsChoose = []
    print(len(tpPointsChoose))
    for i in range(len(tpPointsChoose) - 1):
      print('i', i)
      cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
    cv2.imshow('src', init_img)


def ROI_byMouse():
  global src, ROI, ROI_flag, mask2
  mask = np.zeros(img.shape, np.uint8)
  pts = np.array([lsPointsChoose], np.int32)

  pts = pts.reshape((-1, 1, 2)) # -1代表剩下的维度自动计算

  # 画多边形
  mask = cv2.polylines(mask, [pts], True, (0, 255, 255))
  # 填充多边形
  mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))
  cv2.imshow('mask', mask2)
  ROI = cv2.bitwise_and(mask2, img)
  cv2.imshow('ROI', ROI)

  
def main():
  global img, init_img, ROI
  img = cv2.imread('1.jpg')  
 
  # 图像预处理,设置其大小  
  height, width = img.shape[:2]  
  size = (int(width * 0.3), int(height * 0.3)) 
  img = cv2.resize(img, size, interpolation=cv2.INTER_AREA)  
  ROI = img.copy()
  cv2.namedWindow('src')
  cv2.setMouseCallback('src', on_mouse)  
  cv2.imshow('src', img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()


if __name__ == '__main__':
  main()

以上这篇python cv2截取不规则区域图片实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用百度翻译进行中翻英示例
Apr 14 Python
仅用50行Python代码实现一个简单的代理服务器
Apr 08 Python
python检测是文件还是目录的方法
Jul 03 Python
python基础知识小结之集合
Nov 25 Python
Python安装官方whl包和tar.gz包的方法(推荐)
Jun 04 Python
python 读写文件,按行修改文件的方法
Jul 12 Python
使用python3实现操作串口详解
Jan 01 Python
python调用其他文件函数或类的示例
Jul 16 Python
Win10系统下安装labelme及json文件批量转化方法
Jul 30 Python
jupyter实现重新加载模块
Apr 16 Python
查看keras各种网络结构各层的名字方式
Jun 11 Python
关于Python中*args和**kwargs的深入理解
Aug 07 Python
Python lxml模块的基本使用方法分析
Dec 21 #Python
python Manager 之dict KeyError问题的解决
Dec 21 #Python
tornado+celery的简单使用详解
Dec 21 #Python
Python selenium的基本使用方法分析
Dec 21 #Python
Flask框架搭建虚拟环境的步骤分析
Dec 21 #Python
Django restframework 框架认证、权限、限流用法示例
Dec 21 #Python
python支持多线程的爬虫实例
Dec 21 #Python
You might like
使用PHP提取视频网站页面中的FLASH地址的代码
2010/04/17 PHP
PHP中利用substr_replace将指定两位置之间的字符替换为*号
2011/01/27 PHP
国产PHP开发框架myqee新手快速入门教程
2014/07/14 PHP
php将一维数组转换为每3个连续值组成的二维数组
2016/05/06 PHP
用javascript动态调整iframe高度的方法
2007/03/06 Javascript
javascript 简单高效判断数据类型 系列函数 By shawl.qiu
2007/03/06 Javascript
JQuery 无废话系列教程(二) jquery实战篇上
2009/06/23 Javascript
javascript DOM编程实例(智播客学习)
2009/11/23 Javascript
jquery实现图片渐变切换兼容ie6/Chrome/Firefox
2013/08/02 Javascript
自己编写的类似JS的trim方法
2013/10/09 Javascript
关闭浏览器输入框自动补齐 兼容IE,FF,Chrome等主流浏览器
2014/02/11 Javascript
jQuery遍历Table应用示例
2014/04/09 Javascript
JQuery中Text方法用法实例分析
2015/05/18 Javascript
js游戏人物上下左右跑步效果代码分享
2015/08/28 Javascript
jquery与ajax获取特殊字符实例详解
2017/01/08 Javascript
jQuery实现的弹幕效果完整实例
2017/09/06 jQuery
实例讲解JavaScript预编译流程
2019/01/24 Javascript
javascript实现抢购倒计时程序
2019/08/26 Javascript
继承行为在 ES5 与 ES6 中的区别详解
2019/12/24 Javascript
JavaScript数组排序的六种常见算法总结
2020/08/18 Javascript
微信小程序自定义yPicker组件实现省市区三级联动功能
2020/10/29 Javascript
[54:28]EG vs OG 2019国际邀请赛小组赛 BO2 第一场 8.16
2019/08/18 DOTA
python抓取网页内容示例分享
2014/02/24 Python
Python的Tornado框架异步编程入门实例
2015/04/24 Python
Python读取properties配置文件操作示例
2018/03/29 Python
使用python socket分发大文件的实现方法
2019/07/08 Python
python计算无向图节点度的实例代码
2019/11/22 Python
关于多种方式完美解决Python pip命令下载第三方库的问题
2020/12/21 Python
网络安全类面试题
2015/08/01 面试题
零件设计自荐信范文
2013/11/27 职场文书
大学三年计划书范文
2014/04/30 职场文书
电子专业自荐信
2014/07/01 职场文书
小人国观后感
2015/06/11 职场文书
会议简报格式范文
2015/07/20 职场文书
python基础之while循环语句的使用
2021/04/20 Python
vue实现列表垂直无缝滚动
2022/04/08 Vue.js