python cv2截取不规则区域图片实例


Posted in Python onDecember 21, 2019

知识掌握

cv2.threshold()函数:

设置固定级别的阈值应用于多通道矩阵,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点。

Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst

在其中:

src:表示的是图片源

thresh:表示的是阈值(起始值)

maxval:表示的是最大值

type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)

import cv2 

img = cv2.imread('1.jpg')
cv2.imshow("src", img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, dst = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("dst", dst)
cv2.waitKey(0)

python cv2截取不规则区域图片实例

cv2.findContours()函数:

查找检测物体的轮廓

cv2.findContours(image, mode, method)

opencv2返回两个值:contours:hierarchy。

注:opencv3会返回三个值,分别是img, countours, hierarchy

在其中:

image:表示的是寻找轮廓的图像;

mode:表示的是轮廓的检索模式,有四种:

cv2.RETR_EXTERNAL表示只检测外轮廓

cv2.RETR_LIST检测的轮廓不建立等级关系

cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。

cv2.RETR_TREE建立一个等级树结构的轮廓。

method:表示的是轮廓的近似办法

cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1

cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息

cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

import numpy as np 
import cv2

rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle)

img, countours, hierarchy = cv2.findContours(rectangle, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(countours)
print(hierarchy)
cv2.waitKey(0)

python cv2截取不规则区域图片实例

[array([[[ 25, 25]],
[[ 25, 275]],
[[275, 275]],
[[275, 25]]], dtype=int32)]

[[[-1 -1 -1 -1]]]

cv2.polylines函数:

绘制多边形

cv2.polylines(img, pts, isClosed, color[, thickness[, lineType[,shift]]])

首先需要顶点坐标.将这些点转换为rowsx1x2形状的数组,其中rows是顶点数,它应该是int32类型。

import numpy as np
import cv2
# Create a black image
img = np.zeros((200, 200, 3), np.uint8)

pts = np.array([[10, 5], [20, 30], [70, 20], [50, 10]], np.int32) # 每个点都是(x, y)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(img, [pts], True, (0, 255, 255))

pts = np.array([[100, 5], [150, 30], [80, 20], [90, 10]], np.int32)
cv2.polylines(img, [pts], False, (0, 255, 255))
cv2.imshow('img2', img)

cv2.waitKey()

如果第三个参数为False,您将获得连接所有点的折线,而不是闭合形状。

cv2.polylines()可用于绘制多条线.只需创建要绘制的所有行的列表并将其传递给函数, 所有线条都将单独绘制.绘制一组行比为每行调用cv2.line()要好得多,速度更快.

python cv2截取不规则区域图片实例

cv2.fillPoly)函数

可以用来填充任意形状的图型.可以用来绘制多边形,工作中也经常使用非常多个边来近似的画一条曲线.cv2.fillPoly()函数可以一次填充多个图型.

cv2.fillPoly(image,ppt,Scalar(255,255,255))

image:表示的是多边形将被画到image上

ppt:表示的是多边形的顶点集为ppt

Scalar:表示的是多边形的颜色定义为Scarlar(255,255,255),即RGB的值为白色

img = np.zeros((1080, 1920, 3), np.uint8)
area1 = np.array([[250, 200], [300, 100], [750, 800], [100, 1000]])
area2 = np.array([[1000, 200], [1500, 200], [1500, 400], [1000, 400]])
 
cv2.fillPoly(img, [area1, area2], (255, 255, 255))
 
plt.imshow(img)
plt.show()

python cv2截取不规则区域图片实例

按位操作-bitwise operations

import numpy as np 
import cv2

rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle)

circle = np.zeros((300,300),dtype="uint8")
cv2.circle(circle,(150,150),150,255,-1)
cv2.imshow("Circle",circle)

bitwiseAnd = cv2.bitwise_and(rectangle,circle)
cv2.imshow("And",bitwiseAnd)

bitwiseOr = cv2.bitwise_or(rectangle,circle)
cv2.imshow("OR",bitwiseOr)

bitwiseXor = cv2.bitwise_xor(rectangle,circle)
cv2.imshow("XOR",bitwiseXor)

bitwiseNot = cv2.bitwise_not(rectangle)
cv2.imshow("Not",bitwiseNot)
cv2.waitKey(0)

如果一个给定的像素的值大于零,那么这个像素会被打开,如果它的值为零,它就会被关闭。按位功能在这些二进制条件下运行。

AND:当且仅当两个像素都大于零时,按位AND才为真。

OR:如果两个像素中的任何一个大于零,则按位“或”为真。

XOR 异或功能:当且仅当两个像素中的任何一个大于零时,按位XOR才为真,但不是两者都是。当且仅当两个像素一个大于0一个小于0时才为真,其他都为false

NOT 取反:倒置图像中的“开”和“关”像素。

python cv2截取不规则区域图片实例

# -*- coding: utf-8 -*-
 
import cv2
import numpy as np
global img
global point1, point2
 
lsPointsChoose = []
tpPointsChoose = []
 
pointsCount = 0
count = 0 
pointsMax = 5
 
lsPointsChoose = []
tpPointsChoose = []
 
pointsCount = 0
count = 0
pointsMax = 5

 
def on_mouse(event, x, y, flags, param):
  global img, point1, point2, count, pointsMax
  global lsPointsChoose, tpPointsChoose # 存入选择的点
  global pointsCount # 对鼠标按下的点计数
  global init_img, ROI_bymouse_flag
  init_img = img.copy() # 此行代码保证每次都重新再原图画 避免画多了

  if event == cv2.EVENT_LBUTTONDOWN: # 左键点击
 
    pointsCount = pointsCount + 1
    # 为了保存绘制的区域,画的点稍晚清零
    if(pointsCount == pointsMax + 1):
      pointsCount = 0
      tpPointsChoose = []
    print('pointsCount:', pointsCount)
    point1 = (x, y)
    print (x, y)
    # 画出点击的点
    cv2.circle(init_img, point1, 10, (0, 255, 0), 5)
 
    # 将选取的点保存到list列表里
    lsPointsChoose.append([x, y]) # 用于转化为darry 提取多边形ROI
    tpPointsChoose.append((x, y)) # 用于画点

    # 将鼠标选的点用直线链接起来
    print(len(tpPointsChoose))
    for i in range(len(tpPointsChoose) - 1):
      cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
    # 点击到pointMax时可以提取去绘图
    if(pointsCount == pointsMax):
      # 绘制感兴趣区域
      ROI_byMouse()
      ROI_bymouse_flag = 1
      lsPointsChoose = []
 
    cv2.imshow('src', init_img)
    
  # 右键按下清除轨迹
  if event == cv2.EVENT_RBUTTONDOWN: # 右键点击
    print("right-mouse")
    pointsCount = 0
    tpPointsChoose = []
    lsPointsChoose = []
    print(len(tpPointsChoose))
    for i in range(len(tpPointsChoose) - 1):
      print('i', i)
      cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
    cv2.imshow('src', init_img)


def ROI_byMouse():
  global src, ROI, ROI_flag, mask2
  mask = np.zeros(img.shape, np.uint8)
  pts = np.array([lsPointsChoose], np.int32)

  pts = pts.reshape((-1, 1, 2)) # -1代表剩下的维度自动计算

  # 画多边形
  mask = cv2.polylines(mask, [pts], True, (0, 255, 255))
  # 填充多边形
  mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))
  cv2.imshow('mask', mask2)
  ROI = cv2.bitwise_and(mask2, img)
  cv2.imshow('ROI', ROI)

  
def main():
  global img, init_img, ROI
  img = cv2.imread('1.jpg')  
 
  # 图像预处理,设置其大小  
  height, width = img.shape[:2]  
  size = (int(width * 0.3), int(height * 0.3)) 
  img = cv2.resize(img, size, interpolation=cv2.INTER_AREA)  
  ROI = img.copy()
  cv2.namedWindow('src')
  cv2.setMouseCallback('src', on_mouse)  
  cv2.imshow('src', img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()


if __name__ == '__main__':
  main()

以上这篇python cv2截取不规则区域图片实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python关闭windows进程的方法
Apr 18 Python
python中pandas.DataFrame对行与列求和及添加新行与列示例
Mar 12 Python
Python操作csv文件实例详解
Jul 31 Python
Python爬虫_城市公交、地铁站点和线路数据采集实例
Jan 10 Python
Python搭建FTP服务器的方法示例
Jan 19 Python
python实现对任意大小图片均匀切割的示例
Dec 05 Python
python初学者,用python实现基本的学生管理系统(python3)代码实例
Apr 10 Python
Python实现爬取亚马逊数据并打印出Excel文件操作示例
May 16 Python
python中pip的使用和修改下载源的方法
Jul 08 Python
对python中不同模块(函数、类、变量)的调用详解
Jul 16 Python
Django REST Framework之频率限制的使用
Sep 29 Python
python-numpy-指数分布实例详解
Dec 07 Python
Python lxml模块的基本使用方法分析
Dec 21 #Python
python Manager 之dict KeyError问题的解决
Dec 21 #Python
tornado+celery的简单使用详解
Dec 21 #Python
Python selenium的基本使用方法分析
Dec 21 #Python
Flask框架搭建虚拟环境的步骤分析
Dec 21 #Python
Django restframework 框架认证、权限、限流用法示例
Dec 21 #Python
python支持多线程的爬虫实例
Dec 21 #Python
You might like
PHP无限分类(树形类)
2013/09/28 PHP
PHP实现清除MySQL死连接的方法
2016/07/23 PHP
JQuery 应用 JQuery.groupTable.js
2010/12/15 Javascript
jQuery操作select的实例代码
2012/06/14 Javascript
向左滚动文字 js代码效果
2013/08/17 Javascript
JavaScript 基本概念
2015/01/20 Javascript
select隐藏选中值对应的id,显示其它id的简单实现方法
2016/08/25 Javascript
BootStrap Table 获取同行不同列元素的方法
2016/12/19 Javascript
详解微信小程序开发之城市选择器 城市切换
2017/01/17 Javascript
Bootstrap 下拉多选框插件Bootstrap Multiselect
2017/01/22 Javascript
浅谈JS获取元素的N种方法及其动静态讨论
2017/08/25 Javascript
jQuery-ui插件sortable实现自由拖动排序
2018/12/01 jQuery
jQuery选择器之基本选择器用法实例分析
2019/02/19 jQuery
[04:02]DOTA2上海特锦赛小组赛第二日recap精彩回顾
2016/02/28 DOTA
Python操作json数据的一个简单例子
2014/04/17 Python
详解Python的Flask框架中的signals信号机制
2016/06/13 Python
Python实现遍历目录的方法【测试可用】
2017/03/22 Python
Python入门_浅谈数据结构的4种基本类型
2017/05/16 Python
python、java等哪一门编程语言适合人工智能?
2017/11/13 Python
numpy使用技巧之数组过滤实例代码
2018/02/03 Python
python实现雪花飘落效果实例讲解
2019/06/18 Python
解决python cv2.imread 读取中文路径的图片返回为None的问题
2020/06/02 Python
Python使用itcaht库实现微信自动收发消息功能
2020/07/13 Python
Python中Selenium模块的使用详解
2020/10/09 Python
python 获取剪切板内容的两种方法
2020/11/28 Python
Urban Outfitters美国官网:美国生活方式品牌
2016/08/26 全球购物
eBay澳大利亚站:eBay.com.au
2018/02/02 全球购物
澳大利亚宠物食品和药物在线:Jumbo Pets
2018/03/24 全球购物
英国家庭、花园、汽车和移动解决方案:Easylife Group
2018/05/23 全球购物
计算 s=(x*y)1/2,用两个宏定义来实现
2016/08/11 面试题
大二自我鉴定范文
2013/10/05 职场文书
安全检查与奖惩制度
2014/01/23 职场文书
实习指导老师评语
2014/04/26 职场文书
课外科技活动总结
2014/08/27 职场文书
大学生自荐书范文
2015/03/05 职场文书
仅用一句SQL更新整张表的涨跌幅、涨跌率的解决方案
2021/05/06 MySQL