详解Python设计模式之策略模式


Posted in Python onJune 15, 2020

虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用。《设计模式:可复用面向对象软件的基础》一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”。

1、策略模式概述

策略模式:定义一系列算法,把它们一一封装起来,并且使它们之间可以相互替换。此模式让算法的变化不会影响到使用算法的客户。

电商领域有个使用“策略”模式的经典案例,即根据客户的属性或订单中的商品计算折扣。

假如一个网店制定了下述折扣规则。

  • 有 1000 或以上积分的顾客,每个订单享 5% 折扣。
  • 同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。
  • 订单中的不同商品达到 10 个或以上,享 7% 折扣。

简单起见,我们假定一个订单一次只能享用一个折扣。

UML类图如下:

详解Python设计模式之策略模式

Promotion 抽象类提供了不同算法的公共接口,fidelityPromo、BulkPromo 和 LargeOrderPromo 三个子类实现具体的“策略”,具体策略由上下文类的客户选择。

在这个示例中,实例化订单(Order 类)之前,系统会以某种方式选择一种促销折扣策略,然后把它传给 Order 构造方法。具体怎么选择策略,不在这个模式的职责范围内。(选择策略可以使用工厂模式。)

2、传统方法实现策略模式:

from abc import ABC, abstractmethod
from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')


class LineItem:
 """订单中单个商品的数量和单价"""
 def __init__(self, product, quantity, price):
 self.product = product
 self.quantity = quantity
 self.price = price

 def total(self):
 return self.price * self.quantity


class Order:
 """订单"""
 def __init__(self, customer, cart, promotion=None):
 self.customer = customer
 self.cart = list(cart)
 self.promotion = promotion

 def total(self):
 if not hasattr(self, '__total'):
  self.__total = sum(item.total() for item in self.cart)
 return self.__total

 def due(self):
 if self.promotion is None:
  discount = 0
 else:
  discount = self.promotion.discount(self)
 return self.total() - discount

 def __repr__(self):
 fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
 return fmt.format(self.total(), self.due())


class Promotion(ABC): # 策略:抽象基类
 @abstractmethod
 def discount(self, order):
 """返回折扣金额(正值)"""


class FidelityPromo(Promotion): # 第一个具体策略
 """为积分为1000或以上的顾客提供5%折扣"""
 def discount(self, order):
 return order.total() * 0.05 if order.customer.fidelity >= 1000 else 0


class BulkItemPromo(Promotion): # 第二个具体策略
 """单个商品为20个或以上时提供10%折扣"""
 def discount(self, order):
 discount = 0
 for item in order.cart:
  if item.quantity >= 20:
  discount += item.total() * 0.1
 return discount


class LargeOrderPromo(Promotion): # 第三个具体策略
 """订单中的不同商品达到10个或以上时提供7%折扣"""
 def discount(self, order):
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
  return order.total() * 0.07
 return 0


joe = Customer('John Doe', 0)
ann = Customer('Ann Smith', 1100)

cart = [LineItem('banana', 4, 0.5),
 LineItem('apple', 10, 1.5),
 LineItem('watermellon', 5, 5.0)]

print('策略一:为积分为1000或以上的顾客提供5%折扣')
print(Order(joe, cart, FidelityPromo()))
print(Order(ann, cart, FidelityPromo()))

banana_cart = [LineItem('banana', 30, 0.5),
  LineItem('apple', 10, 1.5)]

print('策略二:单个商品为20个或以上时提供10%折扣')
print(Order(joe, banana_cart, BulkItemPromo()))

long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]

print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
print(Order(joe, long_order, LargeOrderPromo()))
print(Order(joe, cart, LargeOrderPromo()))

输出:

策略一:为积分为1000或以上的顾客提供5%折扣
<订单 总价: 42.00 实付: 42.00>
<订单 总价: 42.00 实付: 39.90>
策略二:单个商品为20个或以上时提供10%折扣
<订单 总价: 30.00 实付: 28.50>
策略三:订单中的不同商品达到10个或以上时提供7%折扣
<订单 总价: 10.00 实付: 9.30>
<订单 总价: 42.00 实付: 42.00>

3、使用函数实现策略模式

在传统策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,除此之外没有其他任何实例属性。它们看起来像是普通的函数一样。的确如此,在 Python 中,我们可以把具体策略换成了简单的函数,并且去掉策略的抽象类。

from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')


class LineItem:
 def __init__(self, product, quantity, price):
 self.product = product
 self.quantity = quantity
 self.price = price

 def total(self):
 return self.price * self.quantity


class Order:
 def __init__(self, customer, cart, promotion=None):
 self.customer = customer
 self.cart = list(cart)
 self.promotion = promotion

 def total(self):
 if not hasattr(self, '__total'):
  self.__total = sum(item.total() for item in self.cart)
 return self.__total

 def due(self):
 if self.promotion is None:
  discount = 0
 else:
  discount = self.promotion(self)
 return self.total() - discount

 def __repr__(self):
 fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
 return fmt.format(self.total(), self.due())


def fidelity_promo(order):
 """为积分为1000或以上的顾客提供5%折扣"""
 return order.total() * .05 if order.customer.fidelity >= 1000 else 0


def bulk_item_promo(order):
 """单个商品为20个或以上时提供10%折扣"""
 discount = 0
 for item in order.cart:
 if item.quantity >= 20:
  discount += item.total() * .1
 return discount


def large_order_promo(order):
 """订单中的不同商品达到10个或以上时提供7%折扣"""
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
 return order.total() * .07
 return 0


joe = Customer('John Doe', 0)
ann = Customer('Ann Smith', 1100)

cart = [LineItem('banana', 4, 0.5),
 LineItem('apple', 10, 1.5),
 LineItem('watermellon', 5, 5.0)]

print('策略一:为积分为1000或以上的顾客提供5%折扣')
print(Order(joe, cart, fidelity_promo))
print(Order(ann, cart, fidelity_promo))

banana_cart = [LineItem('banana', 30, 0.5),
  LineItem('apple', 10, 1.5)]

print('策略二:单个商品为20个或以上时提供10%折扣')
print(Order(joe, banana_cart, bulk_item_promo))

long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]

print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
print(Order(joe, long_order, large_order_promo))
print(Order(joe, cart, large_order_promo))

其实只要是支持高阶函数的语言,就可以如此实现,例如 C# 中,可以用委托实现。只是如此实现反而使代码变得复杂不易懂。而 Python 中,函数天然就可以当做参数来传递。

值得注意的是,《设计模式:可复用面向对象软件的基础》一书的作者指出:“策略对象通常是很好的享元。” 享元是可共享的对象,可以同时在多个上下文中使用。共享是推荐的做法,这样不必在每个新的上下文(这里是 Order 实例)中使用相同的策略时不断新建具体策略对象,从而减少消耗。因此,为了避免 [策略模式] 的运行时消耗,可以配合 [享元模式] 一起使用,但这样,代码行数和维护成本会不断攀升。

在复杂的情况下,需要具体策略维护内部状态时,可能需要把“策略”和“享元”模式结合起来。但是,具体策略一般没有内部状态,只是处理上下文中的数据。此时,一定要使用普通的函数,别去编写只有一个方法的类,再去实现另一个类声明的单函数接口。函数比用户定义的类的实例轻量,而且无需使用“享元”模式,因为各个策略函数在 Python 编译模块时只会创建一次。普通的函数也是“可共享的对象,可以同时在多个上下文中使用”。

以上就是详解Python设计模式之策略模式的详细内容,更多关于Python 策略模式的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
使用Python判断IP地址合法性的方法实例
Mar 13 Python
python实现计算资源图标crc值的方法
Oct 05 Python
全面了解Python环境配置及项目建立
Jun 30 Python
使用Scrapy爬取动态数据
Oct 21 Python
对python的输出和输出格式详解
Dec 08 Python
对Python w和w+权限的区别详解
Jan 23 Python
Python GUI编程 文本弹窗的实例
Jun 11 Python
python命令行参数用法实例分析
Jun 25 Python
使用python打印十行杨辉三角过程详解
Jul 10 Python
python opencv旋转图片的使用方法
Jun 04 Python
opencv深入浅出了解机器学习和深度学习
Mar 17 Python
python基础之//、/与%的区别详解
Jun 10 Python
python能做哪方面的工作
Jun 15 #Python
python实现二分类和多分类的ROC曲线教程
Jun 15 #Python
python属于解释型语言么
Jun 15 #Python
python要安装在哪个盘
Jun 15 #Python
python中wheel的用法整理
Jun 15 #Python
keras绘制acc和loss曲线图实例
Jun 15 #Python
Python定义一个函数的方法
Jun 15 #Python
You might like
php中怎么搜索相关联数组键值及获取之
2013/10/17 PHP
php利用scws实现mysql全文搜索功能的方法
2014/12/25 PHP
详解WordPress中用于更新和获取用户选项数据的PHP函数
2016/03/08 PHP
php制作圆形用户头像的实例_自定义封装类源代码
2017/09/18 PHP
laravel按天、按小时,查询数据的实例
2019/10/09 PHP
JAVASCRIPT 对象的创建与使用
2021/03/09 Javascript
通过Mootools 1.2来操纵HTML DOM元素
2009/09/15 Javascript
jQuery MD5加密实现代码
2010/03/15 Javascript
Javascript 面向对象 重载
2010/05/13 Javascript
Javascript开发之三数组对象实例介绍
2012/11/12 Javascript
60个很实用的jQuery代码开发技巧收集
2014/12/15 Javascript
浅谈利用JavaScript进行的DDoS攻击原理与防御
2015/06/04 Javascript
基于javascript实现彩票随机数生成(升级版)
2020/04/17 Javascript
sencha ext js 6 快速入门(必看)
2016/06/01 Javascript
js-FCC算法-No repeats please字符串的全排列(详解)
2017/05/02 Javascript
基于EasyUI的基础之上实现树形功能菜单
2017/06/28 Javascript
JS设计模式之惰性模式(二)
2017/09/29 Javascript
JavaScript 隐性类型转换步骤浅析
2018/03/15 Javascript
用Python制作检测Linux运行信息的工具的教程
2015/04/01 Python
python基本语法练习实例
2017/09/19 Python
详解django中使用定时任务的方法
2018/09/27 Python
10招!看骨灰级Pythoner玩转Python的方法
2019/04/15 Python
python requests库的使用
2021/01/06 Python
用Python实现定时备份Mongodb数据并上传到FTP服务器
2021/01/27 Python
一款基于css3的列表toggle特效实例教程
2015/01/04 HTML / CSS
StubHub意大利:购买和出售全球演唱会和体育赛事门票
2017/11/21 全球购物
美国领先的医疗警报服务:Philips Lifeline
2018/03/12 全球购物
波兰补充商店:Muscle Power
2018/10/29 全球购物
国际花店:Pickup Flowers
2020/04/10 全球购物
泰国排名第一的家居用品中心:HomePro
2020/11/18 全球购物
几个MySql的面试题
2013/04/22 面试题
厂长助理岗位职责
2013/12/27 职场文书
云南省召开党的群众路线教育实践活动总结会议新闻稿
2014/10/21 职场文书
2014年学生会工作总结
2014/11/07 职场文书
思想政治表现评语
2015/01/04 职场文书
基于Redis过期事件实现订单超时取消
2021/05/08 Redis