详解Python设计模式之策略模式


Posted in Python onJune 15, 2020

虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用。《设计模式:可复用面向对象软件的基础》一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”。

1、策略模式概述

策略模式:定义一系列算法,把它们一一封装起来,并且使它们之间可以相互替换。此模式让算法的变化不会影响到使用算法的客户。

电商领域有个使用“策略”模式的经典案例,即根据客户的属性或订单中的商品计算折扣。

假如一个网店制定了下述折扣规则。

  • 有 1000 或以上积分的顾客,每个订单享 5% 折扣。
  • 同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。
  • 订单中的不同商品达到 10 个或以上,享 7% 折扣。

简单起见,我们假定一个订单一次只能享用一个折扣。

UML类图如下:

详解Python设计模式之策略模式

Promotion 抽象类提供了不同算法的公共接口,fidelityPromo、BulkPromo 和 LargeOrderPromo 三个子类实现具体的“策略”,具体策略由上下文类的客户选择。

在这个示例中,实例化订单(Order 类)之前,系统会以某种方式选择一种促销折扣策略,然后把它传给 Order 构造方法。具体怎么选择策略,不在这个模式的职责范围内。(选择策略可以使用工厂模式。)

2、传统方法实现策略模式:

from abc import ABC, abstractmethod
from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')


class LineItem:
 """订单中单个商品的数量和单价"""
 def __init__(self, product, quantity, price):
 self.product = product
 self.quantity = quantity
 self.price = price

 def total(self):
 return self.price * self.quantity


class Order:
 """订单"""
 def __init__(self, customer, cart, promotion=None):
 self.customer = customer
 self.cart = list(cart)
 self.promotion = promotion

 def total(self):
 if not hasattr(self, '__total'):
  self.__total = sum(item.total() for item in self.cart)
 return self.__total

 def due(self):
 if self.promotion is None:
  discount = 0
 else:
  discount = self.promotion.discount(self)
 return self.total() - discount

 def __repr__(self):
 fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
 return fmt.format(self.total(), self.due())


class Promotion(ABC): # 策略:抽象基类
 @abstractmethod
 def discount(self, order):
 """返回折扣金额(正值)"""


class FidelityPromo(Promotion): # 第一个具体策略
 """为积分为1000或以上的顾客提供5%折扣"""
 def discount(self, order):
 return order.total() * 0.05 if order.customer.fidelity >= 1000 else 0


class BulkItemPromo(Promotion): # 第二个具体策略
 """单个商品为20个或以上时提供10%折扣"""
 def discount(self, order):
 discount = 0
 for item in order.cart:
  if item.quantity >= 20:
  discount += item.total() * 0.1
 return discount


class LargeOrderPromo(Promotion): # 第三个具体策略
 """订单中的不同商品达到10个或以上时提供7%折扣"""
 def discount(self, order):
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
  return order.total() * 0.07
 return 0


joe = Customer('John Doe', 0)
ann = Customer('Ann Smith', 1100)

cart = [LineItem('banana', 4, 0.5),
 LineItem('apple', 10, 1.5),
 LineItem('watermellon', 5, 5.0)]

print('策略一:为积分为1000或以上的顾客提供5%折扣')
print(Order(joe, cart, FidelityPromo()))
print(Order(ann, cart, FidelityPromo()))

banana_cart = [LineItem('banana', 30, 0.5),
  LineItem('apple', 10, 1.5)]

print('策略二:单个商品为20个或以上时提供10%折扣')
print(Order(joe, banana_cart, BulkItemPromo()))

long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]

print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
print(Order(joe, long_order, LargeOrderPromo()))
print(Order(joe, cart, LargeOrderPromo()))

输出:

策略一:为积分为1000或以上的顾客提供5%折扣
<订单 总价: 42.00 实付: 42.00>
<订单 总价: 42.00 实付: 39.90>
策略二:单个商品为20个或以上时提供10%折扣
<订单 总价: 30.00 实付: 28.50>
策略三:订单中的不同商品达到10个或以上时提供7%折扣
<订单 总价: 10.00 实付: 9.30>
<订单 总价: 42.00 实付: 42.00>

3、使用函数实现策略模式

在传统策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,除此之外没有其他任何实例属性。它们看起来像是普通的函数一样。的确如此,在 Python 中,我们可以把具体策略换成了简单的函数,并且去掉策略的抽象类。

from collections import namedtuple

Customer = namedtuple('Customer', 'name fidelity')


class LineItem:
 def __init__(self, product, quantity, price):
 self.product = product
 self.quantity = quantity
 self.price = price

 def total(self):
 return self.price * self.quantity


class Order:
 def __init__(self, customer, cart, promotion=None):
 self.customer = customer
 self.cart = list(cart)
 self.promotion = promotion

 def total(self):
 if not hasattr(self, '__total'):
  self.__total = sum(item.total() for item in self.cart)
 return self.__total

 def due(self):
 if self.promotion is None:
  discount = 0
 else:
  discount = self.promotion(self)
 return self.total() - discount

 def __repr__(self):
 fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
 return fmt.format(self.total(), self.due())


def fidelity_promo(order):
 """为积分为1000或以上的顾客提供5%折扣"""
 return order.total() * .05 if order.customer.fidelity >= 1000 else 0


def bulk_item_promo(order):
 """单个商品为20个或以上时提供10%折扣"""
 discount = 0
 for item in order.cart:
 if item.quantity >= 20:
  discount += item.total() * .1
 return discount


def large_order_promo(order):
 """订单中的不同商品达到10个或以上时提供7%折扣"""
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
 return order.total() * .07
 return 0


joe = Customer('John Doe', 0)
ann = Customer('Ann Smith', 1100)

cart = [LineItem('banana', 4, 0.5),
 LineItem('apple', 10, 1.5),
 LineItem('watermellon', 5, 5.0)]

print('策略一:为积分为1000或以上的顾客提供5%折扣')
print(Order(joe, cart, fidelity_promo))
print(Order(ann, cart, fidelity_promo))

banana_cart = [LineItem('banana', 30, 0.5),
  LineItem('apple', 10, 1.5)]

print('策略二:单个商品为20个或以上时提供10%折扣')
print(Order(joe, banana_cart, bulk_item_promo))

long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]

print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
print(Order(joe, long_order, large_order_promo))
print(Order(joe, cart, large_order_promo))

其实只要是支持高阶函数的语言,就可以如此实现,例如 C# 中,可以用委托实现。只是如此实现反而使代码变得复杂不易懂。而 Python 中,函数天然就可以当做参数来传递。

值得注意的是,《设计模式:可复用面向对象软件的基础》一书的作者指出:“策略对象通常是很好的享元。” 享元是可共享的对象,可以同时在多个上下文中使用。共享是推荐的做法,这样不必在每个新的上下文(这里是 Order 实例)中使用相同的策略时不断新建具体策略对象,从而减少消耗。因此,为了避免 [策略模式] 的运行时消耗,可以配合 [享元模式] 一起使用,但这样,代码行数和维护成本会不断攀升。

在复杂的情况下,需要具体策略维护内部状态时,可能需要把“策略”和“享元”模式结合起来。但是,具体策略一般没有内部状态,只是处理上下文中的数据。此时,一定要使用普通的函数,别去编写只有一个方法的类,再去实现另一个类声明的单函数接口。函数比用户定义的类的实例轻量,而且无需使用“享元”模式,因为各个策略函数在 Python 编译模块时只会创建一次。普通的函数也是“可共享的对象,可以同时在多个上下文中使用”。

以上就是详解Python设计模式之策略模式的详细内容,更多关于Python 策略模式的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python读取环境变量的方法和自定义类分享
Nov 22 Python
使用IronPython把Python脚本集成到.NET程序中的教程
Mar 31 Python
使用Python的urllib和urllib2模块制作爬虫的实例教程
Jan 20 Python
Python正则抓取新闻标题和链接的方法示例
Apr 24 Python
Python将DataFrame的某一列作为index的方法
Apr 08 Python
python join方法使用详解
Jul 30 Python
python实现ip地址查询经纬度定位详解
Aug 30 Python
Pandas聚合运算和分组运算的实现示例
Oct 17 Python
Python利用PyExecJS库执行JS函数的案例分析
Dec 18 Python
python数据爬下来保存的位置
Feb 17 Python
Python如何执行系统命令
Sep 23 Python
Python扫描端口的实现
Jan 25 Python
python能做哪方面的工作
Jun 15 #Python
python实现二分类和多分类的ROC曲线教程
Jun 15 #Python
python属于解释型语言么
Jun 15 #Python
python要安装在哪个盘
Jun 15 #Python
python中wheel的用法整理
Jun 15 #Python
keras绘制acc和loss曲线图实例
Jun 15 #Python
Python定义一个函数的方法
Jun 15 #Python
You might like
ajax php 实现写入数据库
2009/09/02 PHP
什么是PHP7中的孤儿进程与僵尸进程
2019/04/14 PHP
两个SUBMIT按钮,如何区分处理
2006/08/22 Javascript
Jquery 表单取值赋值的一些基本操作
2009/10/11 Javascript
javascript 多种搜索引擎集成的页面实现代码
2010/01/02 Javascript
Json对象替换字符串占位符实现代码
2010/11/17 Javascript
JavaScript数组深拷贝和浅拷贝的两种方法
2014/04/16 Javascript
JS对img标签进行优化使用onerror显示默认图像
2014/04/24 Javascript
Jquery ajax加载等待执行结束再继续执行下面代码操作
2015/11/24 Javascript
Seajs是什么及sea.js 由来,特点以及优势
2016/10/13 Javascript
jQuery右下角悬浮广告实例
2016/10/17 Javascript
Node.js 回调函数实例详解
2017/07/06 Javascript
vue: WebStorm设置快速编译运行的方法
2018/10/18 Javascript
解决layui中onchange失效以及form动态渲染失效的问题
2019/09/27 Javascript
Node.js利用Express实现用户注册登陆功能(推荐)
2020/10/26 Javascript
[28:42]Ti4正赛VG vs NEWBEE1
2014/07/19 DOTA
[02:31]《DAC最前线》之选手酒店现场花絮
2015/01/30 DOTA
python+selenium开发环境搭建图文教程
2017/08/11 Python
Python魔法方法详解
2019/02/13 Python
Django框架实现的普通登录案例【使用POST方法】
2019/05/15 Python
python中的句柄操作的方法示例
2019/06/20 Python
pandas分区间,算频率的实例
2019/07/04 Python
用python实现英文字母和相应序数转换的方法
2019/09/18 Python
解决HTML5中滚动到底部的事件问题
2019/08/22 HTML / CSS
凯蒂·佩里个人女鞋品牌:Katy Perry Collections
2019/04/04 全球购物
Luxplus荷兰:以会员价购买美容产品等,独家优惠
2019/08/30 全球购物
凌阳科技股份有限公司C++程序员面试题笔试题
2014/11/20 面试题
市级绿色学校申报材料
2014/08/25 职场文书
2015年元旦演讲稿
2014/09/12 职场文书
爱护公共设施演讲稿
2014/09/13 职场文书
信仰观后感
2015/06/03 职场文书
2015年城管执法工作总结
2015/07/23 职场文书
2016党校培训心得体会
2016/01/07 职场文书
学习心理学心得体会
2016/01/22 职场文书
Angular性能优化之第三方组件和懒加载技术
2021/05/10 Javascript
Python数据分析入门之教你怎么搭建环境
2021/05/13 Python