Posted in Python onJune 19, 2020
在密码学中,ElGamal加密算法是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔提出。GnuPG和PGP等很多密码学系统中都应用到了ElGamal算法。
ElGamal加密算法可以定义在任何循环群G上。它的安全性取决于G上的离散对数难题。
使用Python实现ElGamal加密算法,完成加密解密过程,明文使用的是125位数字(1000比特)。
代码如下:
import random from math import pow a = random.randint(2, 10) #产生小于p的随机常数a def gcd(a, b): if a < b: return gcd(b, a) elif a % b == 0: return b; else: return gcd(b, a % b) # Generating large random numbers def gen_key(q): key = random.randint(pow(10, 20), q) while gcd(q, key) != 1: key = random.randint(pow(10, 20), q) return key # Modular exponentiation def power(a, b, c): x = 1 y = a while b > 0: if b % 2 == 0: x = (x * y) % c; y = (y * y) % c b = int(b / 2) return x % c # Asymmetric encryption def encrypt(msg, p, h, r): en_msg = [] b = gen_key(p) # 得b K = power(h, b, p)#K=(Sa)^b mod p C1 = power(r, b, p) #C1=Sb=r^b mod p for i in range(0, len(msg)): en_msg.append(msg[i]) print("C1 : ", C1) # print("(Sa)^b mod p used : ", K) for i in range(0, len(en_msg)): en_msg[i] = K * ord(en_msg[i]) print("C2 : ", en_msg) return en_msg, C1 def decrypt(C2, C1, a, p): dr_msg = [] h = power(C1, a, p) for i in range(0, len(C2)): dr_msg.append(chr(int(C2[i] / h))) return dr_msg # Driver code def main(): msg = '01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234' # 共125位数字,1000bit print("明文 :", msg) p = random.randint(pow(10, 20), pow(10, 50))# 获得大素数q r = random.randint(2, p)#得r a = gen_key(p) # Private key for receiver h = power(r, a, p) C2, C1 = encrypt(msg, p, h, r) dr_msg = decrypt(C2, C1, a, p) dmsg = ''.join(dr_msg) print("解密后文 :", dmsg); if __name__ == '__main__': main()
总结
到此这篇关于Python实现ElGamal加密算法的示例代码的文章就介绍到这了,更多相关python ElGamal加密算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
Python实现ElGamal加密算法的示例代码
- Author -
出门左拐是海声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@