Pandas —— resample()重采样和asfreq()频度转换方式


Posted in Python onFebruary 26, 2020

resample()

resample()进行重采样。

重采样(Resampling)指的是把时间序列的频度变为另一个频度的过程。把高频度的数据变为低频度叫做降采样(downsampling),把低频度变为高频度叫做增采样(upsampling)。

降采样

考虑因素:

各区间哪边是闭合的(参数:closed)

如何标记各聚合面元,用区间的开头还是末尾(参数:label)

In [232]: ts_index = pd.date_range('2018-08-03',periods =12,freq = 'T')

In [233]: ts = pd.Series(np.arange(12),index = ts_index)

In [234]: ts
Out[234]:
2018-08-03 00:00:00  0
2018-08-03 00:01:00  1
2018-08-03 00:02:00  2
2018-08-03 00:03:00  3
2018-08-03 00:04:00  4
2018-08-03 00:05:00  5
2018-08-03 00:06:00  6
2018-08-03 00:07:00  7
2018-08-03 00:08:00  8
2018-08-03 00:09:00  9
2018-08-03 00:10:00 10
2018-08-03 00:11:00 11
Freq: T, dtype: int32

默认使用左标签(label=‘left'),左闭合(closed='left')

此时第一个区间为:2018-08-03 00:00:00~2018-08-03 00:04:59,故sum为10,label为:2018-08-03 00:00:00

In [235]: ts.resample('5min').sum()
Out[235]:
2018-08-03 00:00:00 10
2018-08-03 00:05:00 35
2018-08-03 00:10:00 21
Freq: 5T, dtype: int32

可以指定为右闭合(closed='right'),默认使用左标签(label=‘left')

此时第一个区间为:2018-08-02 23:55:01~2018-08-03 00:00:00,故sum为0,label为:2018-08-02 23:55:00

In [236]: ts.resample('5min',closed='right').sum()
Out[236]:
2018-08-02 23:55:00  0
2018-08-03 00:00:00 15
2018-08-03 00:05:00 40
2018-08-03 00:10:00 11
Freq: 5T, dtype: int32

可以指定为右闭合(closed='right'),右标签(label=‘right')

此时第一个区间为:2018-08-02 23:55:01~2018-08-03 00:00:00,故sum为0,label为:2018-08-03 00:00:00

In [237]: ts.resample('5min',closed='right',label='right').sum()
Out[237]:
2018-08-03 00:00:00  0
2018-08-03 00:05:00 15
2018-08-03 00:10:00 40
2018-08-03 00:15:00 11
Freq: 5T, dtype: int32

升采样

考虑因素:

没有聚合,但是需要填充

In [244]: frame = pd.DataFrame(np.random.randn(2, 4),
  ...:      index=pd.date_range('1/1/2000', periods=2,
  ...:           freq='W-WED'), # freq='W-WED'表示按周
  ...:      columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [245]: frame
Out[245]:
   Colorado  Texas New York  Ohio
2000-01-05 1.201713 0.029819 -1.366082 -1.325252
2000-01-12 -0.711291 -1.070133 1.469272 0.809806

当我们对这个数据进行聚合的的时候,每个组只有一个值,以及gap(间隔)之间的缺失值。在不使用任何聚合函数的情况下,

我们使用asfreq方法将其转换为高频度:

In [246]: df_daily = frame.resample('D').asfreq()

In [247]: df_daily
Out[247]:
   Colorado  Texas New York  Ohio
2000-01-05 1.201713 0.029819 -1.366082 -1.325252
2000-01-06  NaN  NaN  NaN  NaN
2000-01-07  NaN  NaN  NaN  NaN
2000-01-08  NaN  NaN  NaN  NaN
2000-01-09  NaN  NaN  NaN  NaN
2000-01-10  NaN  NaN  NaN  NaN
2000-01-11  NaN  NaN  NaN  NaN
2000-01-12 -0.711291 -1.070133 1.469272 0.809806

使用ffill()进行填充

In [248]: frame.resample('D').ffill()
Out[248]:
   Colorado  Texas New York  Ohio
2000-01-05 1.201713 0.029819 -1.366082 -1.325252
2000-01-06 1.201713 0.029819 -1.366082 -1.325252
2000-01-07 1.201713 0.029819 -1.366082 -1.325252
2000-01-08 1.201713 0.029819 -1.366082 -1.325252
2000-01-09 1.201713 0.029819 -1.366082 -1.325252
2000-01-10 1.201713 0.029819 -1.366082 -1.325252
2000-01-11 1.201713 0.029819 -1.366082 -1.325252
2000-01-12 -0.711291 -1.070133 1.469272 0.809806

In [249]: frame.resample('D').ffill(limit=2)
Out[249]:
   Colorado  Texas New York  Ohio
2000-01-05 1.201713 0.029819 -1.366082 -1.325252
2000-01-06 1.201713 0.029819 -1.366082 -1.325252
2000-01-07 1.201713 0.029819 -1.366082 -1.325252
2000-01-08  NaN  NaN  NaN  NaN
2000-01-09  NaN  NaN  NaN  NaN
2000-01-10  NaN  NaN  NaN  NaN
2000-01-11  NaN  NaN  NaN  NaN
2000-01-12 -0.711291 -1.070133 1.469272 0.809806

新的日期索引没必要跟旧的重叠

In [250]: frame.resample('W-THU').ffill()
Out[250]:
   Colorado  Texas New York  Ohio
2000-01-06 1.201713 0.029819 -1.366082 -1.325252
2000-01-13 -0.711291 -1.070133 1.469272 0.809806

分组重采样

In [279]: times = pd.date_range('2018-08-3 00:00', freq='1min', periods=10)

In [280]: df2 = pd.DataFrame({'time': times.repeat(3),
  ...:      'key': np.tile(['a', 'b', 'c'], 10),
  ...:      'value': np.arange(30)})

In [281]: df2[:5]
Out[281]:
 key    time value
0 a 2018-08-03 00:00:00  0
1 b 2018-08-03 00:00:00  1
2 c 2018-08-03 00:00:00  2
3 a 2018-08-03 00:01:00  3
4 b 2018-08-03 00:01:00  4

In [282]: df2.groupby(['key',pd.Grouper(key='time',freq='5min')]).sum()
Out[282]:
       value
key time
a 2018-08-03 00:00:00  30
 2018-08-03 00:05:00 105
b 2018-08-03 00:00:00  35
 2018-08-03 00:05:00 110
c 2018-08-03 00:00:00  40
 2018-08-03 00:05:00 115

asfreq()

asfreq()进行频度转换。

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df
      s
2000-01-01 00:00:00 0.0
2000-01-01 00:01:00 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:03:00 3.0

将频度转换为30s

>>> df.asfreq(freq='30S')
      s
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 NaN
2000-01-01 00:03:00 3.0

将频度转换为2min,不会进行重采样(与resample的不同之处)

>>> df.asfreq(freq='2min')
      s
2000-01-01 00:00:00 0.0
2000-01-01 00:02:00 2.0

使用bfill()进行填充

>>> df.asfreq(freq='30S').bfill()
      s
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 2.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 3.0
2000-01-01 00:03:00 3.0

以上这篇Pandas —— resample()重采样和asfreq()频度转换方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python httplib,smtplib使用方法
Sep 06 Python
python数字图像处理之骨架提取与分水岭算法
Apr 27 Python
Python(Django)项目与Apache的管理交互的方法
May 16 Python
详解Python下载图片并保存本地的两种方式
May 15 Python
Python hexstring-list-str之间的转换方法
Jun 12 Python
PyCharm更改字体和界面样式的方法步骤
Sep 27 Python
在jupyter notebook 添加 conda 环境的操作详解
Apr 10 Python
python中列表的含义及用法
May 26 Python
13个Pandas实用技巧,助你提高开发效率
Aug 19 Python
python动态规划算法实例详解
Nov 22 Python
关于pycharm 切换 python3.9 报错 ‘HTMLParser‘ object has no attribute ‘unescape‘ 的问题
Nov 24 Python
如何在pycharm中快捷安装pip命令(如pygame)
May 31 Python
python实现银行实战系统
Feb 26 #Python
python GUI库图形界面开发之PyQt5浏览器控件QWebEngineView详细使用方法
Feb 26 #Python
python序列类型种类详解
Feb 26 #Python
python3光学字符识别模块tesserocr与pytesseract的使用详解
Feb 26 #Python
Python中if有多个条件处理方法
Feb 26 #Python
python GUI库图形界面开发之PyQt5线程类QThread详细使用方法
Feb 26 #Python
Python处理PDF与CDF实例
Feb 26 #Python
You might like
PHP 中的一些经验积累
2006/10/09 PHP
详解Yii实现分页的两种方法
2017/01/14 PHP
学习ExtJS fit布局使用说明
2009/10/08 Javascript
js 中的switch表达式使用示例
2020/06/03 Javascript
jQuery窗口、文档、网页各种高度的精确理解
2014/07/02 Javascript
js网页滚动条滚动事件实例分析
2015/05/05 Javascript
JavaScript+html5 canvas绘制渐变区域完整实例
2016/01/26 Javascript
JavaScript正则表达式替换字符串中图片地址(img src)的方法
2017/01/13 Javascript
B/S(Web)实时通讯解决方案分享
2017/04/06 Javascript
微信小程序之购物车功能
2020/09/23 Javascript
HTML5开发Kinect体感游戏的实例应用
2017/09/18 Javascript
VUE重点问题总结
2018/03/19 Javascript
NodeJS安装图文教程
2018/04/19 NodeJs
react-navigation之动态修改title的内容
2018/09/26 Javascript
利用js-cookie实现前端设置缓存数据定时失效
2019/06/18 Javascript
简述ES6新增关键字let与var的区别
2019/08/23 Javascript
JavaScript 预解析的4种实现方法解析
2019/09/03 Javascript
vue 动态添加的路由页面刷新时失效的原因及解决方案
2021/02/26 Vue.js
Python序列之list和tuple常用方法以及注意事项
2015/01/09 Python
使用python将多个excel文件合并到同一个文件的方法
2019/07/09 Python
python用quad、dblquad实现一维二维积分的实例详解
2019/11/20 Python
python求最大公约数和最小公倍数的简单方法
2020/02/13 Python
python使用梯度下降算法实现一个多线性回归
2020/03/24 Python
Python中使用filter过滤列表的一个小技巧分享
2020/05/02 Python
python 如何调用 dubbo 接口
2020/09/24 Python
canvas绘制太极图的实现示例
2020/04/29 HTML / CSS
DVF官方网站:美国时装界尊尚品牌
2017/08/29 全球购物
欧洲最大的高尔夫零售商:American Golf
2019/09/02 全球购物
平面网站制作专科生的自我评价分享
2013/12/11 职场文书
银行优秀员工事迹
2014/02/06 职场文书
《莫高窟》教学反思
2014/02/25 职场文书
马智宇婚礼主持词
2014/03/22 职场文书
乡镇网格化管理实施方案
2014/03/23 职场文书
搞笑的爱情检讨书
2014/10/01 职场文书
优秀教师个人材料
2014/12/15 职场文书
css3 文字断裂效果
2022/04/22 HTML / CSS