python 计算概率密度、累计分布、逆函数的例子


Posted in Python onFebruary 25, 2020

计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个:

pdf:连续随机分布的概率密度函数

pmf:离散随机分布的概率密度函数

cdf:累计分布函数

百分位函数(累计分布函数的逆函数)

生存函数的逆函数(1 - cdf 的逆函数)

函数里面不仅能跟一个数据,还能跟一个数组。下面用正态分布举例说明:

>>> import scipy.stats as st

>>> st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值
0.5

>>> st.norm.cdf([-1, 0, 1])# 标准正态分布分别在 -1, 0, 1 处的累计分布概率值
array([0.15865525, 0.5, 0.84134475])

>>> st.norm.pdf(0) # 标准正态分布在 0 处的概率密度值
0.3989422804014327

>>> st.norm.ppf(0.975)# 标准正态分布在 0.975 处的逆函数值
1.959963984540054

>>> st.norm.lsf(0.975)# 标准正态分布在 0.025 处的生存函数的逆函数值
1.959963984540054

对于非标准正态分布,通过更改参数 loc 与 scale 来改变均值与标准差:

>>> st.norm.cdf(0, loc=2, scale=1) # 均值为 2,标准差为 1 的正态分布在 0 处的累计分布概率值
0.022750131948179195

对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:

>>> st.binom.pmf(4, n=100, p=0.05) # 参数值 n=100, p=0.05 的二项分布在 4 处的概率密度值
0.17814264156968956

>>> st.geom.pmf(4, p=0.05) # 参数值 p=0.05 的几何分布在 4 处的概率密度值
0.04286875

>>> st.poisson.pmf(2, mu=3) # 参数值 mu=3 的泊松分布在 2 处的概率密度值
0.22404180765538775

>>> st.chi2.ppf(0.95, df=10) # 自由度为 10 的卡方分布在 0.95 处的逆函数值
18.307038053275146

>>> st.t.ppf(0.975, df=10) # 自由度为 10 的 t 分布在 0.975 处的逆函数值
2.2281388519649385

>>> st.f.ppf(0.95, dfn=2, dfd=12) # 自由度为 2, 12 的 F 分布在 0.95 处的逆函数值
3.8852938346523933

补充拓展:给定概率密度,生成随机数 python实现

实现的方法可以不止一种:

rejection sampling

invert the cdf

Metropolis Algorithm (MCMC)

本篇介绍根据累积概率分布函数的逆函数(2:invert the CDF)生成的方法。

自己的理解不一定正确,有错误望指正。

目标:

已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x

PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1

步骤(具体解释后面会说):

1、根据pdf得到cdf

2、由cdf得到inverse of the cdf

3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x

求cdf逆函数的具体方法:

对于上面的第二步,可以分成两类:

1、当CDF的逆函数好求时,直接根据公式求取,

2、反之当CDF的逆函数不好求时,用数值模拟方法

自己的理解:为什么需要根据cdf的逆去获得x?

原因一:

因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆)

原因二:

这仅是我自己的直观理解,根据下图所示(左上为pdf,右上为cdf)

python 计算概率密度、累计分布、逆函数的例子

由步骤3可知,我们首先生成[0,1)的均匀随机数,此随机数作为cdf的y,去映射到cdf的x(若用cdf的逆函数表示则是由x映射到y),可以参考上图的右上,既然cdf的y是均匀随机的,那么对于cdf中同样范围的x,斜率大的部分将会有更大的机会被映射,因为对应的y范围更大(而y是随即均匀分布的),那么,cdf的斜率也就等同于pdf的值,这正好符合若x的pdf较大,那么有更大的概率出现(即重复很多次后,该x会出现的次数最多)

代码实现——方法一,公式法

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

count_dict = dict()
bin_count = 20

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf(uniform_random)
 

def pdf(x):
 return 2 * x
 
# cdf = x^2, 其逆函数很好求,因此直接用公式法
def inverse_cdf(x):
 return math.sqrt(x)


def draw_pdf(D):
	global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 # 因为映射bin的时候采用的floor操作,因此加上0.5
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 # 用bin去映射,否则不好操作
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

结果:

python 计算概率密度、累计分布、逆函数的例子

代码实现——方法二,数值法

数值模拟cdf的关键是创建lookup table,

table的size越大则结果越真实(即区间划分的个数)

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

lookup_table_size = 40
CDFlookup_table = np.zeros((lookup_table_size))

count_dict = dict()
bin_count = 20

def inverse_cdf_numerically(y):
 global lookup_table_size
 global CDFlookup_table
 value = 0.0
 for i in range(lookup_table_size):
  x = i * 1.0 / (lookup_table_size - 1)
  value += pdf2(x)
  CDFlookup_table[i] = value
 CDFlookup_table /= value # normalize the cdf

 if y < CDFlookup_table[0]: 
  t = y / CDFlookup_table[0]
  return t / lookup_table_size
 index = -1
 for j in range(lookup_table_size):
  if CDFlookup_table[j] >= y:
   index = j
   break
 # linear interpolation
 t = (y - CDFlookup_table[index - 1]) / \
  (CDFlookup_table[index] - CDFlookup_table[index - 1])
 fractional_index = index + t # 因为index从0开始,所以不是 (index-1)+t
 return fractional_index / lookup_table_size


def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf_numerically(uniform_random)


def pdf2(x):
 return (x * x * x - 10.0 * x * x + 5.0 * x + 11.0) / (10.417)

def draw_pdf(D):
 global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


for i in range(90000):
 x = inverseCDF()
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

真实函数与模拟结果

python 计算概率密度、累计分布、逆函数的例子

扩展:生成伯努利、正太分布

import numpy as np
import matplotlib.pyplot as plt
"""
reference:
https://blog.demofox.org/2017/07/25/counting-bits-the-normal-distribution/
"""


def plot_bar_x():
 # this is for plotting purpose
 index = np.arange(counting.shape[0])
 plt.bar(index, counting)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


# if dice_side=2, is binomial distribution
# if dice_side>2 , is multinomial distribution
dice_side = 2
# if N becomes larger, then multinomial distribution will more like normal distribution
N = 100

counting = np.zeros(((dice_side - 1) * N + 1))

for i in range(30000):
 sum = 0
 for j in range(N):
  dice_result = np.random.randint(0, dice_side)
  sum += dice_result

 counting[sum] += 1

# normalization
counting /= np.sum(counting)
plot_bar_x()

以上这篇python 计算概率密度、累计分布、逆函数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python随机生成彩票号码的方法
Mar 05 Python
详解Python的Lambda函数与排序
Oct 25 Python
python 调用HBase的简单实例
Dec 18 Python
Python SqlAlchemy动态添加数据表字段实例解析
Feb 07 Python
django1.11.1 models 数据库同步方法
May 30 Python
python实现简单flappy bird
Dec 24 Python
Python爬虫之UserAgent的使用实例
Feb 21 Python
简单了解python中对象的取反运算符
Jul 01 Python
使用jupyter notebook将文件保存为Markdown,HTML等文件格式
Apr 14 Python
Python下划线5种含义代码实例解析
Jul 10 Python
python接口自动化之ConfigParser配置文件的使用详解
Aug 03 Python
python中tkinter复选框使用操作
Nov 11 Python
python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例
Feb 25 #Python
python统计函数库scipy.stats的用法解析
Feb 25 #Python
Python Websocket服务端通信的使用示例
Feb 25 #Python
Python GUI库PyQt5样式QSS子控件介绍
Feb 25 #Python
浅谈python累加求和+奇偶数求和_break_continue
Feb 25 #Python
Python GUI库PyQt5图形和特效样式QSS介绍
Feb 25 #Python
python 伯努利分布详解
Feb 25 #Python
You might like
PHP实现下载功能的代码
2012/09/29 PHP
PHP中一个有趣的preg_replace函数详解
2018/08/15 PHP
非常不错的功能强大代码简单的管理菜单美化版
2008/07/09 Javascript
解决IE下select标签innerHTML插入option的BUG(兼容IE,FF,Opera,Chrome,Safari)
2010/05/13 Javascript
JQuery1.4+ Ajax IE8 内存泄漏问题
2010/10/15 Javascript
Extjs中ComboBox加载并赋初值的实现方法
2012/03/22 Javascript
JS字符串拼接在ie中都报错的解决方法
2014/03/27 Javascript
利用js制作html table分页示例(js实现分页)
2014/04/25 Javascript
js获取input长度并根据页面宽度设置其大小及居中对齐
2014/08/22 Javascript
Javascript 实现图片无缝滚动
2014/12/19 Javascript
node.js 使用ejs模板引擎时后缀换成.html
2015/04/22 Javascript
JS基于Ajax实现的网页Loading效果代码
2015/10/27 Javascript
JavaScript实战之菜单特效
2016/08/16 Javascript
javascript中apply/call和bind的使用
2017/02/15 Javascript
在vue 中使用 less的教程详解
2018/09/26 Javascript
使用webpack将ES6转化ES5的实现方法
2019/10/13 Javascript
Vue vm.$attrs使用场景详解
2020/03/08 Javascript
javascript+css实现进度条效果
2020/03/25 Javascript
Python bsddb模块操作Berkeley DB数据库介绍
2015/04/08 Python
举例讲解Python的Tornado框架实现数据可视化的教程
2015/05/02 Python
基础的十进制按位运算总结与在Python中的计算示例
2016/06/28 Python
python模块之time模块(实例讲解)
2017/09/13 Python
Python中使用双下划线防止类属性被覆盖问题
2019/06/27 Python
解决Python中报错TypeError: must be str, not bytes问题
2020/04/07 Python
Iconfont(矢量图标)+iconmoon(图标svg互转)配合javascript实现社交分享系统
2020/04/21 Python
Python如何实现爬取B站视频
2020/05/20 Python
tensorflow模型转ncnn的操作方式
2020/05/25 Python
美国南加州的原创极限运动潮牌:Vans(范斯)
2016/08/05 全球购物
英国IT硬件供应商,定制游戏PC:Mesh Computers
2019/03/28 全球购物
室内设计专业个人的自我评价
2013/12/18 职场文书
复核员上岗演讲稿
2014/01/05 职场文书
称象教学反思
2014/02/03 职场文书
竞选大队干部演讲稿
2014/09/11 职场文书
2014年财政局工作总结
2014/12/09 职场文书
2015年三年级班主任工作总结
2015/05/21 职场文书
MySQL系列之十 MySQL事务隔离实现并发控制
2021/07/02 MySQL