python 计算概率密度、累计分布、逆函数的例子


Posted in Python onFebruary 25, 2020

计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个:

pdf:连续随机分布的概率密度函数

pmf:离散随机分布的概率密度函数

cdf:累计分布函数

百分位函数(累计分布函数的逆函数)

生存函数的逆函数(1 - cdf 的逆函数)

函数里面不仅能跟一个数据,还能跟一个数组。下面用正态分布举例说明:

>>> import scipy.stats as st

>>> st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值
0.5

>>> st.norm.cdf([-1, 0, 1])# 标准正态分布分别在 -1, 0, 1 处的累计分布概率值
array([0.15865525, 0.5, 0.84134475])

>>> st.norm.pdf(0) # 标准正态分布在 0 处的概率密度值
0.3989422804014327

>>> st.norm.ppf(0.975)# 标准正态分布在 0.975 处的逆函数值
1.959963984540054

>>> st.norm.lsf(0.975)# 标准正态分布在 0.025 处的生存函数的逆函数值
1.959963984540054

对于非标准正态分布,通过更改参数 loc 与 scale 来改变均值与标准差:

>>> st.norm.cdf(0, loc=2, scale=1) # 均值为 2,标准差为 1 的正态分布在 0 处的累计分布概率值
0.022750131948179195

对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:

>>> st.binom.pmf(4, n=100, p=0.05) # 参数值 n=100, p=0.05 的二项分布在 4 处的概率密度值
0.17814264156968956

>>> st.geom.pmf(4, p=0.05) # 参数值 p=0.05 的几何分布在 4 处的概率密度值
0.04286875

>>> st.poisson.pmf(2, mu=3) # 参数值 mu=3 的泊松分布在 2 处的概率密度值
0.22404180765538775

>>> st.chi2.ppf(0.95, df=10) # 自由度为 10 的卡方分布在 0.95 处的逆函数值
18.307038053275146

>>> st.t.ppf(0.975, df=10) # 自由度为 10 的 t 分布在 0.975 处的逆函数值
2.2281388519649385

>>> st.f.ppf(0.95, dfn=2, dfd=12) # 自由度为 2, 12 的 F 分布在 0.95 处的逆函数值
3.8852938346523933

补充拓展:给定概率密度,生成随机数 python实现

实现的方法可以不止一种:

rejection sampling

invert the cdf

Metropolis Algorithm (MCMC)

本篇介绍根据累积概率分布函数的逆函数(2:invert the CDF)生成的方法。

自己的理解不一定正确,有错误望指正。

目标:

已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x

PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1

步骤(具体解释后面会说):

1、根据pdf得到cdf

2、由cdf得到inverse of the cdf

3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x

求cdf逆函数的具体方法:

对于上面的第二步,可以分成两类:

1、当CDF的逆函数好求时,直接根据公式求取,

2、反之当CDF的逆函数不好求时,用数值模拟方法

自己的理解:为什么需要根据cdf的逆去获得x?

原因一:

因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆)

原因二:

这仅是我自己的直观理解,根据下图所示(左上为pdf,右上为cdf)

python 计算概率密度、累计分布、逆函数的例子

由步骤3可知,我们首先生成[0,1)的均匀随机数,此随机数作为cdf的y,去映射到cdf的x(若用cdf的逆函数表示则是由x映射到y),可以参考上图的右上,既然cdf的y是均匀随机的,那么对于cdf中同样范围的x,斜率大的部分将会有更大的机会被映射,因为对应的y范围更大(而y是随即均匀分布的),那么,cdf的斜率也就等同于pdf的值,这正好符合若x的pdf较大,那么有更大的概率出现(即重复很多次后,该x会出现的次数最多)

代码实现——方法一,公式法

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

count_dict = dict()
bin_count = 20

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf(uniform_random)
 

def pdf(x):
 return 2 * x
 
# cdf = x^2, 其逆函数很好求,因此直接用公式法
def inverse_cdf(x):
 return math.sqrt(x)


def draw_pdf(D):
	global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 # 因为映射bin的时候采用的floor操作,因此加上0.5
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 # 用bin去映射,否则不好操作
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

结果:

python 计算概率密度、累计分布、逆函数的例子

代码实现——方法二,数值法

数值模拟cdf的关键是创建lookup table,

table的size越大则结果越真实(即区间划分的个数)

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

lookup_table_size = 40
CDFlookup_table = np.zeros((lookup_table_size))

count_dict = dict()
bin_count = 20

def inverse_cdf_numerically(y):
 global lookup_table_size
 global CDFlookup_table
 value = 0.0
 for i in range(lookup_table_size):
  x = i * 1.0 / (lookup_table_size - 1)
  value += pdf2(x)
  CDFlookup_table[i] = value
 CDFlookup_table /= value # normalize the cdf

 if y < CDFlookup_table[0]: 
  t = y / CDFlookup_table[0]
  return t / lookup_table_size
 index = -1
 for j in range(lookup_table_size):
  if CDFlookup_table[j] >= y:
   index = j
   break
 # linear interpolation
 t = (y - CDFlookup_table[index - 1]) / \
  (CDFlookup_table[index] - CDFlookup_table[index - 1])
 fractional_index = index + t # 因为index从0开始,所以不是 (index-1)+t
 return fractional_index / lookup_table_size


def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf_numerically(uniform_random)


def pdf2(x):
 return (x * x * x - 10.0 * x * x + 5.0 * x + 11.0) / (10.417)

def draw_pdf(D):
 global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


for i in range(90000):
 x = inverseCDF()
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

真实函数与模拟结果

python 计算概率密度、累计分布、逆函数的例子

扩展:生成伯努利、正太分布

import numpy as np
import matplotlib.pyplot as plt
"""
reference:
https://blog.demofox.org/2017/07/25/counting-bits-the-normal-distribution/
"""


def plot_bar_x():
 # this is for plotting purpose
 index = np.arange(counting.shape[0])
 plt.bar(index, counting)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


# if dice_side=2, is binomial distribution
# if dice_side>2 , is multinomial distribution
dice_side = 2
# if N becomes larger, then multinomial distribution will more like normal distribution
N = 100

counting = np.zeros(((dice_side - 1) * N + 1))

for i in range(30000):
 sum = 0
 for j in range(N):
  dice_result = np.random.randint(0, dice_side)
  sum += dice_result

 counting[sum] += 1

# normalization
counting /= np.sum(counting)
plot_bar_x()

以上这篇python 计算概率密度、累计分布、逆函数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python获得linux下所有挂载点(mount points)的方法
Apr 29 Python
Python3.2中Print函数用法实例详解
May 19 Python
浅谈Python中列表生成式和生成器的区别
Aug 03 Python
python机器学习理论与实战(二)决策树
Jan 19 Python
Python多重继承的方法解析执行顺序实例分析
May 26 Python
Python3.0中普通方法、类方法和静态方法的比较
May 03 Python
python正则-re的用法详解
Jul 28 Python
python实现飞机大战游戏(pygame版)
Oct 26 Python
Python远程方法调用实现过程解析
Jul 28 Python
基于python模拟TCP3次握手连接及发送数据
Nov 06 Python
Python结合百度语音识别实现实时翻译软件的实现
Jan 18 Python
只用Python就可以制作的简单词云
Jun 07 Python
python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例
Feb 25 #Python
python统计函数库scipy.stats的用法解析
Feb 25 #Python
Python Websocket服务端通信的使用示例
Feb 25 #Python
Python GUI库PyQt5样式QSS子控件介绍
Feb 25 #Python
浅谈python累加求和+奇偶数求和_break_continue
Feb 25 #Python
Python GUI库PyQt5图形和特效样式QSS介绍
Feb 25 #Python
python 伯努利分布详解
Feb 25 #Python
You might like
深入解析yii权限分级式访问控制的实现(非RBAC法)
2013/06/13 PHP
codeigniter集成ucenter1.6双向通信的解决办法
2014/06/12 PHP
PHP网页游戏学习之Xnova(ogame)源码解读(二)
2014/06/23 PHP
JavaScript入门教程(8) Location地址对象
2009/01/31 Javascript
基于jquery的simpleValidate简易验证插件
2014/01/31 Javascript
jQuery实现的产品自动360度旋转展示特效源码分享
2015/08/21 Javascript
JS打字效果的动态菜单代码分享
2015/08/21 Javascript
11种ASP连接数据库的方法
2015/09/18 Javascript
jQuery Uploadify 上传插件出现Http Error 302 错误的解决办法
2015/12/12 Javascript
基于jQuery Tipso插件实现消息提示框特效
2016/03/16 Javascript
第七篇Bootstrap表单布局实例代码详解(三种表单布局)
2016/06/21 Javascript
微信小程序canvas分享海报功能
2019/10/31 Javascript
jQuery单页面文字搜索插件jquery.fullsearch.js的使用方法
2020/02/04 jQuery
使用 UniApp 实现小程序的微信登录功能
2020/06/09 Javascript
Jquery cookie插件实现原理代码解析
2020/08/04 jQuery
python logging类库使用例子
2014/11/22 Python
Python3.4解释器用法简单示例
2019/03/22 Python
python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)
2019/04/18 Python
python使用tomorrow实现多线程的例子
2019/07/20 Python
Django与pyecharts结合的实例代码
2020/05/13 Python
matlab、python中矩阵的互相导入导出方式
2020/06/01 Python
Python如何解除一个装饰器
2020/08/07 Python
Python高阶函数与装饰器函数的深入讲解
2020/11/10 Python
英国在线自行车店:Merlin Cycles
2018/08/20 全球购物
现代生活方式的家具和装饰:Dot & Bo
2018/12/26 全球购物
SQL Server 2000数据库的文件有哪些,分别进行描述
2013/03/30 面试题
理货员的岗位职责
2013/11/23 职场文书
信息系统专业个人求职信范文
2013/12/07 职场文书
幼儿园大班毕业感言
2014/02/06 职场文书
个人租房协议书
2014/04/09 职场文书
水利水电专业自荐信
2014/07/08 职场文书
佛光寺导游词
2015/02/10 职场文书
财政局长个人总结
2015/03/04 职场文书
少年雷锋观后感
2015/06/10 职场文书
大脑的记忆过程在做数据压缩,不同图形也有共同的记忆格式
2022/04/29 数码科技
python 使用pandas读取csv文件的方法
2022/12/24 Python