python 计算概率密度、累计分布、逆函数的例子


Posted in Python onFebruary 25, 2020

计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个:

pdf:连续随机分布的概率密度函数

pmf:离散随机分布的概率密度函数

cdf:累计分布函数

百分位函数(累计分布函数的逆函数)

生存函数的逆函数(1 - cdf 的逆函数)

函数里面不仅能跟一个数据,还能跟一个数组。下面用正态分布举例说明:

>>> import scipy.stats as st

>>> st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值
0.5

>>> st.norm.cdf([-1, 0, 1])# 标准正态分布分别在 -1, 0, 1 处的累计分布概率值
array([0.15865525, 0.5, 0.84134475])

>>> st.norm.pdf(0) # 标准正态分布在 0 处的概率密度值
0.3989422804014327

>>> st.norm.ppf(0.975)# 标准正态分布在 0.975 处的逆函数值
1.959963984540054

>>> st.norm.lsf(0.975)# 标准正态分布在 0.025 处的生存函数的逆函数值
1.959963984540054

对于非标准正态分布,通过更改参数 loc 与 scale 来改变均值与标准差:

>>> st.norm.cdf(0, loc=2, scale=1) # 均值为 2,标准差为 1 的正态分布在 0 处的累计分布概率值
0.022750131948179195

对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:

>>> st.binom.pmf(4, n=100, p=0.05) # 参数值 n=100, p=0.05 的二项分布在 4 处的概率密度值
0.17814264156968956

>>> st.geom.pmf(4, p=0.05) # 参数值 p=0.05 的几何分布在 4 处的概率密度值
0.04286875

>>> st.poisson.pmf(2, mu=3) # 参数值 mu=3 的泊松分布在 2 处的概率密度值
0.22404180765538775

>>> st.chi2.ppf(0.95, df=10) # 自由度为 10 的卡方分布在 0.95 处的逆函数值
18.307038053275146

>>> st.t.ppf(0.975, df=10) # 自由度为 10 的 t 分布在 0.975 处的逆函数值
2.2281388519649385

>>> st.f.ppf(0.95, dfn=2, dfd=12) # 自由度为 2, 12 的 F 分布在 0.95 处的逆函数值
3.8852938346523933

补充拓展:给定概率密度,生成随机数 python实现

实现的方法可以不止一种:

rejection sampling

invert the cdf

Metropolis Algorithm (MCMC)

本篇介绍根据累积概率分布函数的逆函数(2:invert the CDF)生成的方法。

自己的理解不一定正确,有错误望指正。

目标:

已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x

PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1

步骤(具体解释后面会说):

1、根据pdf得到cdf

2、由cdf得到inverse of the cdf

3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x

求cdf逆函数的具体方法:

对于上面的第二步,可以分成两类:

1、当CDF的逆函数好求时,直接根据公式求取,

2、反之当CDF的逆函数不好求时,用数值模拟方法

自己的理解:为什么需要根据cdf的逆去获得x?

原因一:

因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆)

原因二:

这仅是我自己的直观理解,根据下图所示(左上为pdf,右上为cdf)

python 计算概率密度、累计分布、逆函数的例子

由步骤3可知,我们首先生成[0,1)的均匀随机数,此随机数作为cdf的y,去映射到cdf的x(若用cdf的逆函数表示则是由x映射到y),可以参考上图的右上,既然cdf的y是均匀随机的,那么对于cdf中同样范围的x,斜率大的部分将会有更大的机会被映射,因为对应的y范围更大(而y是随即均匀分布的),那么,cdf的斜率也就等同于pdf的值,这正好符合若x的pdf较大,那么有更大的概率出现(即重复很多次后,该x会出现的次数最多)

代码实现——方法一,公式法

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

count_dict = dict()
bin_count = 20

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf(uniform_random)
 

def pdf(x):
 return 2 * x
 
# cdf = x^2, 其逆函数很好求,因此直接用公式法
def inverse_cdf(x):
 return math.sqrt(x)


def draw_pdf(D):
	global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 # 因为映射bin的时候采用的floor操作,因此加上0.5
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 # 用bin去映射,否则不好操作
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

结果:

python 计算概率密度、累计分布、逆函数的例子

代码实现——方法二,数值法

数值模拟cdf的关键是创建lookup table,

table的size越大则结果越真实(即区间划分的个数)

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

lookup_table_size = 40
CDFlookup_table = np.zeros((lookup_table_size))

count_dict = dict()
bin_count = 20

def inverse_cdf_numerically(y):
 global lookup_table_size
 global CDFlookup_table
 value = 0.0
 for i in range(lookup_table_size):
  x = i * 1.0 / (lookup_table_size - 1)
  value += pdf2(x)
  CDFlookup_table[i] = value
 CDFlookup_table /= value # normalize the cdf

 if y < CDFlookup_table[0]: 
  t = y / CDFlookup_table[0]
  return t / lookup_table_size
 index = -1
 for j in range(lookup_table_size):
  if CDFlookup_table[j] >= y:
   index = j
   break
 # linear interpolation
 t = (y - CDFlookup_table[index - 1]) / \
  (CDFlookup_table[index] - CDFlookup_table[index - 1])
 fractional_index = index + t # 因为index从0开始,所以不是 (index-1)+t
 return fractional_index / lookup_table_size


def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf_numerically(uniform_random)


def pdf2(x):
 return (x * x * x - 10.0 * x * x + 5.0 * x + 11.0) / (10.417)

def draw_pdf(D):
 global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


for i in range(90000):
 x = inverseCDF()
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

真实函数与模拟结果

python 计算概率密度、累计分布、逆函数的例子

扩展:生成伯努利、正太分布

import numpy as np
import matplotlib.pyplot as plt
"""
reference:
https://blog.demofox.org/2017/07/25/counting-bits-the-normal-distribution/
"""


def plot_bar_x():
 # this is for plotting purpose
 index = np.arange(counting.shape[0])
 plt.bar(index, counting)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()


# if dice_side=2, is binomial distribution
# if dice_side>2 , is multinomial distribution
dice_side = 2
# if N becomes larger, then multinomial distribution will more like normal distribution
N = 100

counting = np.zeros(((dice_side - 1) * N + 1))

for i in range(30000):
 sum = 0
 for j in range(N):
  dice_result = np.random.randint(0, dice_side)
  sum += dice_result

 counting[sum] += 1

# normalization
counting /= np.sum(counting)
plot_bar_x()

以上这篇python 计算概率密度、累计分布、逆函数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的Twisted框架编写简单的网络客户端
Apr 16 Python
Python入门之modf()方法的使用
May 15 Python
浅谈Python 中整型对象的存储问题
May 16 Python
Android分包MultiDex策略详解
Oct 30 Python
Django中login_required装饰器的深入介绍
Nov 24 Python
浅谈python 里面的单下划线与双下划线的区别
Dec 01 Python
Python使用三种方法实现PCA算法
Dec 12 Python
对numpy中轴与维度的理解
Apr 18 Python
Python检测数据类型的方法总结
May 20 Python
Django后端发送小程序微信模板消息示例(服务通知)
Dec 17 Python
Python高阶函数、常用内置函数用法实例分析
Dec 26 Python
pycharm如何实现跨目录调用文件
Feb 28 Python
python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例
Feb 25 #Python
python统计函数库scipy.stats的用法解析
Feb 25 #Python
Python Websocket服务端通信的使用示例
Feb 25 #Python
Python GUI库PyQt5样式QSS子控件介绍
Feb 25 #Python
浅谈python累加求和+奇偶数求和_break_continue
Feb 25 #Python
Python GUI库PyQt5图形和特效样式QSS介绍
Feb 25 #Python
python 伯努利分布详解
Feb 25 #Python
You might like
PHP 设计模式之观察者模式介绍
2012/02/22 PHP
PHP生成不重复标识符的方法
2014/11/21 PHP
php获取当月最后一天函数分享
2015/02/02 PHP
用PHP的socket实现客户端到服务端的通信实例详解
2017/02/04 PHP
PHP编程获取各个时间段具体时间的方法
2017/05/26 PHP
JS在IE和FF下attachEvent,addEventListener学习笔记
2009/11/26 Javascript
js打印纸函数代码(递归)
2010/06/18 Javascript
Javascript控制input输入时间格式的方法
2015/01/28 Javascript
javascript中一些util方法汇总
2015/06/10 Javascript
理解javascript中DOM事件
2015/12/25 Javascript
javascript使用Promise对象实现异步编程
2016/03/01 Javascript
使用jQuery的toggle()方法对HTML标签进行显示、隐藏的方法(示例)
2016/09/01 Javascript
jquery 判断div show的状态实例
2016/12/03 Javascript
JS html时钟制作代码分享
2017/03/03 Javascript
Node.js上传文件功能之服务端如何获取文件上传进度
2018/02/05 Javascript
详解JavaScript添加给定的标签选项
2018/09/17 Javascript
基于Vue的商品主图放大镜方案详解
2019/09/19 Javascript
Java Varargs 可变参数用法详解
2020/01/28 Javascript
ES5 模拟 ES6 的 Symbol 实现私有成员功能示例
2020/05/06 Javascript
vant 中van-list的用法说明
2020/11/11 Javascript
python实现监控linux性能及进程消耗性能的方法
2014/07/25 Python
详解Python之unittest单元测试代码
2018/01/24 Python
python3调用百度翻译API实现实时翻译
2018/08/16 Python
Python实现带下标索引的遍历操作示例
2019/05/30 Python
Python笔记之观察者模式
2019/11/20 Python
利用Python的turtle库绘制玫瑰教程
2019/11/23 Python
python3 求约数的实例
2019/12/05 Python
python使用布隆过滤器的实现示例
2020/08/20 Python
Reebonz中国官网:新加坡奢侈品购物网站
2017/03/17 全球购物
师范应届生求职信
2013/11/15 职场文书
婚礼证婚人证婚词
2014/01/08 职场文书
医院检讨书范文
2014/02/01 职场文书
员工合理化建议书
2014/05/19 职场文书
校外活动方案
2014/08/28 职场文书
教师法制教育培训学习心得体会
2016/01/14 职场文书
Python合并多张图片成PDF
2021/06/09 Python