python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)


Posted in Python onAugust 28, 2019

1. 场景描述

一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的K-means聚类算法,算法原理就不介绍了,只从代码层面进行介绍,包含:rest接口、连接mpp数据库、回传json数据、下载图片及数据。

2. 解决方案

2.1 项目套路

(1)python经典算法是单独的服务器部署,提供rest接口出来,供java平台调用,交互的方式是http+json;

(2)数据从mpp数据库-Greenplum中获取;

(3)返回的数据包括三个:1是生成聚类图片的地址;2是聚类项目完整数据地址;3是返回给前端的200条json预览数据。

2.2 restapi类

分两个类,第一个是restapi类,封装rest接口类,其他的经典算法在这里都有对应的方法,是个公共类。

完整代码:

# -*- coding: utf-8 -*-

from flask import Flask, request, send_from_directory
from k_means import exec
import logging
app = Flask(__name__)

#1.服务器上更改为服务器地址,用于存放数据
dirpath = 'E:\\ruanjianlaowang'

#2. 测试连通性,软件老王
@app.route('/')
def index():
  return "Hello, World!"


#3. k-means算法 软件老王
@app.route('/getKmeansInfoByLaowang', methods=['POST'])
def getKmeansInfoByLaowang():
  try:
     result = exec(request.get_json(), dirpath)
  except IndexError as e:
    logging.error(str(e))
    return 'exception:' + str(e)
  except KeyError as e:
    logging.error(str(e))
    return 'exception:' + str(e)
  except ValueError as e:
    logging.error(str(e))
    return 'exception:' + str(e)
  except Exception as e:
    logging.error(str(e))
    return 'exception:' + str(e)
  else:
    return result

#4.文件下载(图片及csv)
@app.route("/<path:filename>")
def getImages(filename):
  return send_from_directory(dirpath, filename, as_attachment=True)

#5.启动
if __name__ == '__main__':
  app.run(host="0.0.0.0", port=5000, debug=True)

代码说明:

使用的是第三方的flask提供的rest服务

(1)服务器上更改为服务器地址,用于存放数据

(2)测试连通性,软件老王

(3)k-means算法 软件老王

(4)文件下载(图片及csv)

(5)启动

2.3 k-means算法类

完整代码:

import pandas as pd
import dbgp as dbgp
from pandas.io import json
from numpy import *
import matplotlib.pyplot as plt
import numpy as np
plt.switch_backend('agg')
import logging

# 执行 软件老王
def exec(params, dirpath):

  #1.获取参数,软件老王
  sql = params.get("sql")
  xlines = params.get("xlines")
  ylines = params.get("ylines")
  xlinesname = params.get("xlinesname")
  ylinesname = params.get("ylinesname")
  grouplinesname = params.get("grouplinesname")

  times = int(params.get("times"))
  groupnum = int(params.get("groupnum"))
  url = params.get("url")
  name = params.get("name")

  #2. 校验是否为空,软件老王
  flag = checkparam(sql, xlines, ylines, times, groupnum)
  if not flag is None and len(flag) != 0:
    return flag

  #3. 从数据库获取数据,软件老王
  try:
    data = dbgp.queryGp(sql)
  except IndexError:
    return sql
  except KeyError:
    return sql
  except ValueError:
    return sql
  except Exception:
    return sql

  if data.empty:
    return "exception:此数据集无数据,请确认后重试"
  #4 调用第三方sklearn的KMeans聚类算法,软件老王
  # data_zs = 1.0 * (data - data.mean()) / data.std() 数据标准化,不需要标准话
  from sklearn.cluster import KMeans
  model = KMeans(n_clusters=groupnum, n_jobs=4, max_iter=times)
  model.fit(data) # 开始聚类

  return export(model, data, data, url, dirpath, name,grouplinesname,xlines, ylines,xlinesname,ylinesname)

  # 5.生成导出excel 软件老王
def export(model, data, data_zs, url, dirpath, name,grouplinesname,xlines, ylines,xlinesname,ylinesname):


  # #详细输出原始数据及其类别
  detail_data = pd.DataFrame().append(data)
  if not grouplinesname is None and len(grouplinesname) != 0:
    detail_data.columns = grouplinesname.split(',')

  r_detail_new = pd.concat([detail_data, pd.Series(model.labels_, index=detail_data.index)], axis=1) # 详细输出每个样本对应的类别
  r_detail_new.columns = list(detail_data.columns) + [u'聚类类别'] # 重命名表头
  outputfile = dirpath + name + '.csv'
  r_detail_new.to_csv(outputfile, encoding='utf_8_sig') # 保存结果


  #重命名表头
  r1 = pd.Series(model.labels_).value_counts() # 统计各个类别的数目
  r2 = pd.DataFrame(model.cluster_centers_) # 找出聚类中心
  r = pd.concat([r2, r1], axis=1) # 横向连接(0是纵向),得到聚类中心对应的类别下的数目
  r.columns = list(data.columns) + [u'类别数目'] # 重命名表头

  return generateimage(r, data_zs, url, dirpath, name,model,xlines, ylines,xlinesname,ylinesname)

#6.生成图片及返回json,软件老王
def generateimage(r, data_zs, url, dirpath, name,model,xlines, ylines,xlinesname,ylinesname):
  image = dirpath + name + '.jpg'

  #6.1 中文处理,软件老王
  plt.rcParams['font.sans-serif'] = ['simhei']
  plt.rcParams['font.family'] = 'sans-serif'
  plt.rcParams['axes.unicode_minus'] = False
  # 6.2 画图,生成图片,软件老王
  labels = model.labels_
  centers = model.cluster_centers_
  data_zs['label'] = labels
  data_zs['label'] = data_zs['label'].astype(np.int)
  # 图标集合
  markers = ['o', 's', '+', 'x', '^', 'v', '<', '>']
  colors = ['b', 'c', 'g', 'k', 'm', 'r', 'y']
  symbols = []
  for m in markers:
    for c in colors:
      symbols.append((m, c))
  # 画每个类别的散点及质心
  for i in range(0, len(centers)):
    df_i = data_zs.loc[data_zs['label'] == i]
    symbol = symbols[i]
    center = centers[i]

    x = df_i[xlines].values.tolist()
    y = df_i[ylines].values.tolist()

    plt.scatter(x, y, marker=symbol[0], color=symbol[1], s=10)
    plt.scatter(center[0], center[1], marker='*', color=symbol[1], s=50)

  plt.title(name)
  plt.xlabel(xlinesname)
  plt.ylabel(ylinesname)
  plt.savefig(image, dpi=150)
  plt.clf()
  plt.close(0)

  # 6.3 返回json数据给前端展示,软件老王
  result = {}
  result['image_url'] = url + '/' + name + '.jpg'
  result['details_url'] = url + '/' + name + '.csv'
  result['data'] = r[:200]  #显示200,多的话,相当于预览
  result = json.dumps(result, ensure_ascii=False)
  result = result.replace('\\', '')
  return result

def checkparam(sql, xlines, ylines, times, groupnum):
  if sql is None or sql.strip() == '' or len(sql.strip()) == 0:
    return "数据集或聚类数据列,不能为空"
  if xlines is None or xlines.strip() == '' or len(xlines.strip()) == 0:
    return "X轴,不能为空"
  if ylines is None or ylines.strip() == '' or len(ylines.strip()) == 0:
    return "Y轴,不能为空"
  if times is None or times <= 0:
    return "聚类个数,不能为空或小于等于0"
  if groupnum is None or groupnum <= 0:
    return "迭代次数,不能为空或小于等于0"

代码说明:

(1)获取参数,软件老王;

(2)校验是否为空,软件老王;

(3)从数据库获取数据,软件老王;

(4)第三方sklearn的KMeans聚类算法,软件老王;

(5)生成导出excel 软件老王

(6)生成图片及返回json,软件老王

​ (6.1) 中文处理,软件老王

​ (6.2) 画图,生成图片,软件老王

​ (6.3) 返回json数据给前端展示,软件老王

2.4 执行效果

2.4.1 json返回

{"image_url":"http://10.192.168.1:5000/ruanjianlaowang_65652.jpg","details_url":"http://10.192.168.1:5000/ruanjianlaowang_65652.csv","data":{"empno":{"0":7747.2,"1":7699.625,"2":7839.0},"mgr":{"0":7729.8,"1":7745.25,"2":7566.0},"sal":{"0":2855.0,"1":1218.75,"2":5000.0},"comm":{"0":29.5110766,"1":117.383964625,"2":31.281453},"deptno":{"0":20.0,"1":25.0,"2":10.0},"类别数目":{"0":5,"1":8,"2":1}}}

2.4.2 返回图片

python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)

2.4.3 返回的数据

python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)

另外说明: 目前项目环境上用的是8核16G的虚拟机,执行数据量是30万,运行状况良好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Mac OS X10.9安装的Python2.7升级Python3.3步骤详解
Dec 04 Python
Python json模块使用实例
Apr 11 Python
解密Python中的描述符(descriptor)
Jun 03 Python
Python列出一个文件夹及其子目录的所有文件
Jun 30 Python
快速了解python leveldb
Jan 18 Python
python爬虫获取百度首页内容教学
Dec 23 Python
python中的反斜杠问题深入讲解
Aug 12 Python
python验证码图片处理(二值化)
Nov 01 Python
vscode配置anaconda3的方法步骤
Aug 08 Python
Django返回HTML文件的实现方法
Sep 17 Python
详解python的xlwings库读写excel操作总结
Feb 26 Python
python 多态 协议 鸭子类型详解
Nov 27 Python
Numpy的简单用法小结
Aug 28 #Python
Python 通过截图匹配原图中的位置(opencv)实例
Aug 27 #Python
Python 转换文本编码实现解析
Aug 27 #Python
python-opencv获取二值图像轮廓及中心点坐标的代码
Aug 27 #Python
python定位xpath 节点位置的方法
Aug 27 #Python
python实现截取屏幕保存文件,删除N天前截图的例子
Aug 27 #Python
python自动化UI工具发送QQ消息的实例
Aug 27 #Python
You might like
php 破解防盗链图片函数
2008/12/09 PHP
php远程下载类分享
2016/04/13 PHP
php利用云片网实现短信验证码功能的示例代码
2017/11/18 PHP
PHP使用HTML5 FileApi实现Ajax上传文件功能示例
2019/07/01 PHP
Javascript中的数学函数
2007/04/04 Javascript
使用新的消息弹出框blackbirdjs
2008/10/16 Javascript
Riot.js 快速的JavaScript单元测试框架
2009/11/09 Javascript
兼容IE和Firefox的javascript获取iframe文档内容的函数
2011/08/15 Javascript
打开新窗口关闭当前页面不弹出关闭提示js代码
2013/03/18 Javascript
jquery实现input输入框实时输入触发事件代码
2014/01/28 Javascript
jQuery实现简单二级下拉菜单
2015/04/12 Javascript
基于JavaScript实现动态创建表格和增加表格行数
2015/12/20 Javascript
深入理解Node.js的HTTP模块
2016/10/12 Javascript
bootstrap学习使用(导航条、下拉菜单、轮播、栅格布局等)
2016/12/01 Javascript
vue使用 better-scroll的参数和方法详解
2018/01/25 Javascript
Vue的轮播图组件实现方法
2018/03/03 Javascript
Vue在chrome44偶现点击子元素事件无法冒泡的解决方法
2019/12/15 Javascript
[01:33]真香警告!DOTA2勇士令状不朽珍藏Ⅱ饰品欣赏
2018/06/26 DOTA
python3.4+pycharm 环境安装及使用方法
2019/06/13 Python
Python标准库:内置函数max(iterable, *[, key, default])说明
2020/04/25 Python
Python threading模块condition原理及运行流程详解
2020/10/05 Python
css3隔行变换色实现示例
2014/02/19 HTML / CSS
英国优质鞋类专家:Robinson’s Shoes
2017/12/08 全球购物
英国领先的瓷砖专家:Walls and Floors
2018/04/27 全球购物
Lookfantastic意大利官网:英国知名美妆购物网站
2019/05/31 全球购物
伦敦最受欢迎的蛋糕店:Konditor & Cook
2019/11/01 全球购物
骨干教师培训制度
2014/01/13 职场文书
运动会开幕式解说词
2014/02/05 职场文书
小学生放飞梦想演讲稿
2014/08/26 职场文书
校园环保广播稿(3篇)
2014/09/15 职场文书
小孩不笨观后感
2015/06/03 职场文书
国庆节新闻稿
2015/07/17 职场文书
品德与社会教学反思
2016/02/24 职场文书
python基础之错误和异常处理
2021/10/24 Python
Python正则表达式中flags参数的实例详解
2022/04/01 Python
js判断两个数组相等的5种方法
2022/05/06 Javascript