用Python可视化新冠疫情数据


Posted in Python onJanuary 18, 2022

前言

不知道大伙有没有看到过这一句话:“中国(疫苗研发)非常困难,因为在中国我们没有办法做第三期临床试验,因为没有病人了。”这句话是中国工程院院士钟南山在上海科技大学2021届毕业典礼上提出的。这句话在全网流传,被广大网友称之为“凡尔赛”发言。

今天让我们用数据来看看这句话是不是“凡尔赛”本赛。在开始之前我们先来说说今天要用到的python库吧!

1.数据获取部分

requests lxml json openpyxl

2.数据可视化部分

pandas  pyecharts(可视化库)

以上的库都可以通过在线下载:

pip instll xx

ps:如果下载速度太慢的话也可以用国内镜像,使用命令,例如:

pip install xx(库名) -i https://pypi.tuna.tsinghua.edu.cn/simple gevent(清华镜像)

现在一起进入今天的代码部分吧!!!

数据获取

目标地址:

https://voice.baidu.com/act/newpneumonia/newpneumonia

进入目标地址我们可以看到如下所示:

用Python可视化新冠疫情数据

现在让我们一起去解析网页结构找到我们要爬取到的数据如下所示:

用Python可视化新冠疫情数据

现在我们找到想要的页面数据接下来就是通过Python来获取这些数据了,上代码:

1 import requests
2 from lxml import etree
3 import json
4 import openpyxl
5 
6 #通用爬虫
7 url = 'https://voice.baidu.com/act/newpneumonia/newpneumonia'
8 headers = {
9    "User-Agent": ".....(换成自己的)"
10 }
11 response = requests.get(url=url,headers=headers).text
12 #在使用xpath的时候要用树形态
13 html = etree.HTML(response)
14 #用xpath来获取我们之前找到的页面json数据  并打印看看
15 json_text = html.xpath('//script[@type="application/json"]/text()')
16 json_text = json_text[0]
17 print(json_text)
之后我们来解析一下json数据,上代码:
1 #用python本地自带的库转换一下json数据
2 result = json.loads(json_text)
3 print(result)
4 #通过打印出转换的对象我们可以看到我们要的数据都要key为component对应5 的值之下  所以现在我们将值拿出来
6 result = result["component"]
7 #再次打印看看结果
8 print(result)
9 获取国内当前数据
10 result = result[0]['caseList']
11 print(result)
接着我们将获取到的数据保存到excel中,上代码:
1 #创建工作簿
2 wb = openpyxl.Workbook()
 3 创建工作表
4 ws = wb.active
5 设置表的标题
6 ws.title = "国内疫情"
7  写入表头
8 ws.append(["省份","累计确诊","死亡","治愈"])
9 #获取各省份的数据并写入
10 for line in result:
11     line_name = [line["area"],line["confirmed"],line["died"],line["crued"]]
12     for ele in line_name:
13         if ele == '':
14             ele = 0
15     ws.append(line_name)
16 #保存到excel中
17 wb.save('./china.xlsx')
最后我们查看一下获取到的数据是什么样的,如图:

用Python可视化新冠疫情数据

emmmm,终于我们把数据获取部分完成了,第二部分的数据可视化来了!!!

数据可视化

这次我们用到的库是pyecharts里面的Map,我们先展示一下本次可视化用到的库

1 #可视化部分
2 import pandas  as pd
3 from pyecharts.charts import Map,Page
4 from pyecharts import options as opts
首先我们要先通过pandas库来获取到刚才我们爬取到的数据,上代码:
1  设置列对齐
2 pd.set_option('display.unicode.ambiguous_as_wide', True)
3  pd.set_option('display.unicode.east_asian_width', True)
4   打开文件
5 df = pd.read_excel('china.xlsx')
6 对省份进行统计
7  data2 = df['省份']
8 data2_list = list(data2)
9 data3 = df['累计确诊']
10  data3_list = list(data3)
11  data4 = df['死亡']
12  data4_list = list(data4)
13 data5 = df ['治愈']
14 data5_list = list(data5)

接着我们来做数据可视化,将在我国地图上的各个省份显示出对应的数值

我们以疫情发生以来治愈数为例,上代码:

1 c = (
2    Map()
3       .add("治愈", [list(z) for z in zip(data2_list, data5_list)], "china")
4      .set_global_opts(
5         title_opts=opts.TitleOpts(),
6         visualmap_opts=opts.VisualMapOpts(max_=200),
7     )
8 )
9 c.render()

用Python可视化新冠疫情数据

当然仅仅一个治愈情况当然说明不了什么,所以我们将三种情况都以这种形式显示出来,上代码:

1 a = (
2     Map()
3     .add("累计确诊", [list(z) for z in zip(data2_list, data3_list)], "china")
4        .set_global_opts(
5       title_opts=opts.TitleOpts(),
6        visualmap_opts=opts.VisualMapOpts(max_=200),
7    )
8 )
9 
10 b = (
11     Map()
12       .add("死亡", [list(z) for z in zip(data2_list, data4_list)], "china")
13       .set_global_opts(
14         title_opts=opts.TitleOpts(),
15         visualmap_opts=opts.VisualMapOpts(max_=200),
16     )
17 )
18 
19 c = (
20     Map()
21        .add("治愈", [list(z) for z in zip(data2_list, data5_list)], "china")
22         .set_global_opts(
23      title_opts=opts.TitleOpts(),
24       visualmap_opts=opts.VisualMapOpts(max_=200),
25     )
26 )
27 
28 page = Page(layout=Page.DraggablePageLayout)
29 page.add(
30     a,
31     b,
32     c,
33 )
34  先生成render.html文件
35 page.render()

用Python可视化新冠疫情数据

当然如果是直接运行代码的话展现出来的地图不是这样的,这个是通过后期的排版来完成的。那么在最后我们来说说是怎么排版的吧。

首先你先将上面的代码运行之后会产生一个render.html的文件然后你打开文件之后可以调整整个页面的布局,根据自己的喜欢来调整,接着点击左上角的“Save Config”将这个json文件保存到跟render.html这个文件同一个路径之下,最后运行一下代码:

1 #完成上一步之后把 page.render()这行注释掉
2 #然后循行这下面
3 Page.save_resize_html("render.html",
4     cfg_file="chart_config.json",
5     dest="my_test.html")

这样以后会产生一个my_test.html这个文件就是我们上面展示的那样啦。以上就是我们这次的结果。从数据的获取到数据可视化,怎么说呢pyecharts还具有其他强大的可视化功能。

python的特色

• 简单
• 易于学习
• 自由开放
• 跨平台
• 可嵌入
• 丰富的库

总结

到此这篇关于用Python可视化新冠疫情数据的文章就介绍到这了,更多相关Python疫情数据可视化内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中threading超线程用法实例分析
May 16 Python
Python实现的简单算术游戏实例
May 26 Python
Python 判断 有向图 是否有环的实例讲解
Feb 01 Python
python模拟登陆,用session维持回话的实例
Dec 27 Python
python从子线程中获得返回值的方法
Jan 30 Python
python字符串循环左移
Mar 08 Python
Python基于codecs模块实现文件读写案例解析
May 11 Python
哪种Python框架适合你?简单介绍几种主流Python框架
Aug 04 Python
Python列表嵌套常见坑点及解决方案
Sep 30 Python
Django ModelForm组件原理及用法详解
Oct 12 Python
利用Python实现学生信息管理系统的完整实例
Dec 30 Python
详解Python+Selenium+ChromeDriver的配置和问题解决
Jan 19 Python
Python机器学习应用之基于线性判别模型的分类篇详解
68行Python代码实现带难度升级的贪吃蛇
Jan 18 #Python
如何利用Python实现n*n螺旋矩阵
Jan 18 #Python
聊聊Python String型列表求最值的问题
Jan 18 #Python
Python的三个重要函数详解
Jan 18 #Python
python多线程方法详解
Jan 18 #Python
用Python生成会跳舞的美女
You might like
无线电的诞生过程
2021/03/01 无线电
php 文件上传类代码
2011/08/06 PHP
php文字水印和php图片水印实现代码(二种加水印方法)
2013/12/25 PHP
PHP面向对象之旅:深入理解static变量与方法
2014/01/06 PHP
CodeIgniter框架数据库事务处理的设计缺陷和解决方案
2014/07/25 PHP
php实现图片上传时添加文字和图片水印技巧
2020/04/18 PHP
thinkPHP模板算术运算相关函数用法分析
2016/07/12 PHP
PHP仿qq空间或朋友圈发布动态、评论动态、回复评论、删除动态或评论的功能(上)
2017/05/26 PHP
php7安装mongoDB扩展的方法分析
2017/08/02 PHP
php判断IP地址是否在多个IP段内
2020/08/18 PHP
JavaScript高级程序设计 客户端存储学习笔记
2011/09/10 Javascript
使用Jquery来实现可以输入值的下拉选单 雏型
2011/12/06 Javascript
解析Javascript单例模式概念与实例
2016/12/05 Javascript
AngularJS基于ngInfiniteScroll实现下拉滚动加载的方法
2016/12/14 Javascript
JavaScript之面向对象_动力节点Java学院整理
2017/06/29 Javascript
浅谈webpack组织模块的原理
2018/03/10 Javascript
安装Node.js并启动本地服务的操作教程
2018/05/12 Javascript
20个最常见的jQuery面试问题及答案
2018/05/23 jQuery
JS中比较两个Object数组是否相等方法实例
2019/11/11 Javascript
关于小程序优化的一些建议(小结)
2020/12/10 Javascript
node脚手架搭建服务器实现token验证的方法
2021/01/20 Javascript
pip安装时ReadTimeoutError的解决方法
2018/06/12 Python
python解压TAR文件至指定文件夹的实例
2019/06/10 Python
python 通过可变参数计算n个数的乘积方法
2019/06/13 Python
Python 实现数据结构-循环队列的操作方法
2019/07/17 Python
Python高级property属性用法实例分析
2019/11/19 Python
python递归函数用法详解
2020/10/26 Python
澳大利亚工具仓库:Tools Warehouse
2018/10/15 全球购物
统计每一学生的平均成绩
2014/06/06 面试题
this关键字的作用
2016/01/30 面试题
《第一朵杏花》教学反思
2014/04/16 职场文书
车辆年审委托书范本
2014/09/18 职场文书
安全先进班组材料
2014/12/26 职场文书
2015年小班保育员工作总结
2015/05/27 职场文书
MySQL系列之三 基础篇
2021/07/02 MySQL
MySQL一些常用高级SQL语句
2021/07/03 MySQL