解决TensorFlow程序无限制占用GPU的方法


Posted in Python onJune 30, 2020

今天遇到一个奇怪的现象,使用tensorflow-gpu的时候,出现内存超额~~如果我训练什么大型数据也就算了,关键我就写了一个y=W*x…显示如下图所示:

程序如下:

import tensorflow as tf

w = tf.Variable([[1.0,2.0]])
b = tf.Variable([[2.],[3.]])

y = tf.multiply(w,b)

init_op = tf.global_variables_initializer()

with tf.Session() as sess:
 sess.run(init_op)
 print(sess.run(y))

出错提示:

占用的内存越来越多,程序崩溃之后,整个电脑都奔溃了,因为整个显卡全被吃了

2018-06-10 18:28:00.263424: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2018-06-10 18:28:00.598075: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1356] Found device 0 with properties: 
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2018-06-10 18:28:00.598453: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1435] Adding visible gpu devices: 0
2018-06-10 18:28:01.265600: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-10 18:28:01.265826: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929]  0 
2018-06-10 18:28:01.265971: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0: N 
2018-06-10 18:28:01.266220: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4740 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
2018-06-10 18:28:01.331056: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 4.63G (4970853120 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.399111: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 4.17G (4473767936 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.468293: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.75G (4026391040 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.533138: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.37G (3623751936 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.602452: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 3.04G (3261376768 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.670225: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.73G (2935238912 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.733120: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.46G (2641714944 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.800101: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 2.21G (2377543424 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.862064: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.99G (2139789056 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.925434: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.79G (1925810176 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:01.986180: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.61G (1733229056 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.043456: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.45G (1559906048 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.103531: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.31G (1403915520 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.168973: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.18G (1263524096 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.229387: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 1.06G (1137171712 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.292997: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 976.04M (1023454720 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.356714: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 878.44M (921109248 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.418167: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 790.59M (828998400 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
2018-06-10 18:28:02.482394: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 711.54M (746098688 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

分析原因:

显卡驱动不是最新版本,用__驱动软件__更新一下驱动,或者自己去下载更新。

TF运行太多,注销全部程序冲洗打开。

由于TF内核编写的原因,默认占用全部的GPU去训练自己的东西,也就是像meiguo一样优先政策吧

这个时候我们得设置两个方面:

  • 选择什么样的占用方式?优先占用__还是__按需占用
  • 选择最大占用多少GPU,因为占用过大GPU会导致其它程序奔溃。最好在0.7以下

先更新驱动:

解决TensorFlow程序无限制占用GPU的方法

再设置TF程序:

注意:单独设置一个不行!按照网上大神博客试了,结果效果还是很差(占用很多GPU)

设置TF:

  • 按需占用
  • 最大占用70%GPU

修改代码如下:

import tensorflow as tf

w = tf.Variable([[1.0,2.0]])
b = tf.Variable([[2.],[3.]])

y = tf.multiply(w,b)

init_op = tf.global_variables_initializer()

config = tf.ConfigProto(allow_soft_placement=True)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
 sess.run(init_op)
 print(sess.run(y))

成功解决:

2018-06-10 18:21:17.532630: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2018-06-10 18:21:17.852442: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1356] Found device 0 with properties: 
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2018-06-10 18:21:17.852817: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1435] Adding visible gpu devices: 0
2018-06-10 18:21:18.511176: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-06-10 18:21:18.511397: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929]  0 
2018-06-10 18:21:18.511544: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0: N 
2018-06-10 18:21:18.511815: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4740 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
[[2. 4.]
 [3. 6.]]

参考资料:

主要参考博客

错误实例

到此这篇关于解决TensorFlow程序无限制占用GPU的方法 的文章就介绍到这了,更多相关TensorFlow 占用GPU内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用python提取html文件中的特定数据的实现代码
Mar 24 Python
Python中基础的socket编程实战攻略
Jun 01 Python
python django 实现验证码的功能实例代码
May 18 Python
Python 中Pickle库的使用详解
Feb 24 Python
Python遍历numpy数组的实例
Apr 04 Python
Python使用爬虫爬取静态网页图片的方法详解
Jun 05 Python
pytorch中tensor的合并与截取方法
Jul 26 Python
修改python plot折线图的坐标轴刻度方法
Dec 13 Python
Python实战之制作天气查询软件
May 14 Python
django页面跳转问题及注意事项
Jul 18 Python
python3 通过 pybind11 使用Eigen加速代码的步骤详解
Dec 07 Python
python中requests库+xpath+lxml简单使用
Apr 29 Python
tensorflow 大于某个值为1,小于为0的实例
Jun 30 #Python
基于tf.shape(tensor)和tensor.shape()的区别说明
Jun 30 #Python
Tensorflow全局设置可见GPU编号操作
Jun 30 #Python
Python logging模块异步线程写日志实现过程解析
Jun 30 #Python
浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置
Jun 30 #Python
Tensorflow中批量读取数据的案列分析及TFRecord文件的打包与读取
Jun 30 #Python
使用Tensorflow-GPU禁用GPU设置(CPU与GPU速度对比)
Jun 30 #Python
You might like
php在文件指定行中写入代码的方法
2012/05/23 PHP
解析PHP计算页面执行时间的实现代码
2013/06/18 PHP
ThinkPHP调用百度翻译类实现在线翻译
2014/06/26 PHP
PHP单例模式详细介绍
2015/07/01 PHP
基于PHP实现等比压缩图片大小
2016/03/04 PHP
Swoole实现异步投递task任务案例详解
2019/04/02 PHP
使用composer命令加载vendor中的第三方类库 的方法
2019/07/09 PHP
基于jQuery的输入框在光标位置插入内容, 并选中
2011/10/29 Javascript
再说AutoComplete自动补全之实现原理
2011/11/05 Javascript
JavaScript和CSS通过expression实现Table居中显示
2013/06/28 Javascript
Javascript实现重力弹跳拖拽运动效果示例
2013/06/28 Javascript
jquery实现模拟百分比进度条渐变效果代码
2015/10/29 Javascript
JavaScript中setter和getter方法介绍
2016/07/11 Javascript
js实现各种复制到剪贴板的方法(分享)
2016/10/27 Javascript
如何使用angularJs
2017/05/08 Javascript
Vue应用部署到服务器的正确方式
2017/07/15 Javascript
教你完全理解ReentrantLock重入锁
2019/06/03 Javascript
layui table 表格上添加日期控件的两种方法
2019/09/28 Javascript
swiperjs实现导航与tab页的联动
2020/12/13 Javascript
[47:02]2018DOTA2亚洲邀请赛3月29日 小组赛B组 VP VS paiN
2018/03/30 DOTA
python实现在sqlite动态创建表的方法
2015/05/08 Python
根据tensor的名字获取变量的值方式
2020/01/04 Python
python3连接mysql获取ansible动态inventory脚本
2020/01/19 Python
Python如何实现的二分查找算法
2020/05/27 Python
解决Keyerror ''acc'' KeyError: ''val_acc''问题
2020/06/18 Python
python中翻译功能translate模块实现方法
2020/12/17 Python
python中numpy数组与list相互转换实例方法
2021/01/29 Python
Python Pygame实现俄罗斯方块
2021/02/19 Python
香港零食网购:上仓胃子
2020/06/08 全球购物
工程建设实施方案
2014/03/14 职场文书
社区志愿者活动方案
2014/08/18 职场文书
企业法人代表证明书
2014/09/27 职场文书
学习党章的体会
2014/11/07 职场文书
2015年底工作总结范文
2015/05/15 职场文书
MySql开发之自动同步表结构
2021/05/28 MySQL
Python提取PDF指定内容并生成新文件
2021/06/09 Python