Pandas时间序列:重采样及频率转换方式


Posted in Python onDecember 26, 2019

如下所示:

import pandas as pd
import numpy as np

一、介绍

重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的处理过程;

将高频率(间隔短)数据聚合到低频率(间隔长)称为降采样(downsampling);

将低频率数据转换到高频率则称为升采样(unsampling);

有些采样即不是降采样也不是升采样,例如将W-WED(每周三)转换为W-FRI;

二、resample方法?转换频率的主力函数

rng = pd.date_range('1/1/2000',periods=100,freq='D')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('M').mean() # 将100天按月进行降采样(聚合)
2000-01-31  -0.156092
2000-02-29  0.060607
2000-03-31  -0.039608
2000-04-30  -0.154838
Freq: M, dtype: float64
ts.resample('M',kind='period').mean()
2000-01  -0.156092
2000-02  0.060607
2000-03  -0.039608
2000-04  -0.154838
Freq: M, dtype: float64

三、降采样(聚合)

1.降采样面元(区间)默认才有左闭右开的形式,而且聚合的索引是以左边界标记

rng = pd.date_range('1/1/2000',periods=12,freq='T')
ts = pd.Series(np.arange(12),index=rng)
ts
2000-01-01 00:00:00   0
2000-01-01 00:01:00   1
2000-01-01 00:02:00   2
2000-01-01 00:03:00   3
2000-01-01 00:04:00   4
2000-01-01 00:05:00   5
2000-01-01 00:06:00   6
2000-01-01 00:07:00   7
2000-01-01 00:08:00   8
2000-01-01 00:09:00   9
2000-01-01 00:10:00  10
2000-01-01 00:11:00  11
Freq: T, dtype: int32
ts.resample('5min').sum()
2000-01-01 00:00:00  10
2000-01-01 00:05:00  35
2000-01-01 00:10:00  21
Freq: 5T, dtype: int32

2.通过参数closed='right'可以实现左开右闭

ts.resample('5min',closed='right').sum()
1999-12-31 23:55:00   0
2000-01-01 00:00:00  15
2000-01-01 00:05:00  40
2000-01-01 00:10:00  11
Freq: 5T, dtype: int32

3.通过参数label='right'可以实现以右边界为聚合后的标签

ts.resample('5min',closed='right',label='right').sum()
2000-01-01 00:00:00   0
2000-01-01 00:05:00  15
2000-01-01 00:10:00  40
2000-01-01 00:15:00  11
Freq: 5T, dtype: int32

4.通过参数loffset可以实现精准的调整标签

ts.resample('5min',closed='right',loffset='-1s').sum()
1999-12-31 23:54:59   0
1999-12-31 23:59:59  15
2000-01-01 00:04:59  40
2000-01-01 00:09:59  11
Freq: 5T, dtype: int32

四、OHLC重采样

在金融领域常用的聚合方式?OHLC,它会计算各个面元的:第一个值(开盘)、最后一个值(收盘)、最大值和最小值,并产生一个DataFrame

print(ts.resample('5min').ohlc())
open high low close
2000-01-01 00:00:00   0   4  0   4
2000-01-01 00:05:00   5   9  5   9
2000-01-01 00:10:00  10  11  10   11

五、通过groupby进行重采样

rng = pd.date_range('1/1/2000',periods=100,freq='D')
ts = pd.Series(np.arange(100),index=rng)
ts.groupby(lambda x:x.month).mean() # 等价于 ts.groupby(rng.month).mean()
1  15
2  45
3  75
4  95
dtype: int32
ts.groupby(lambda x:x.weekday).mean() # 按周聚合
0  47.5
1  48.5
2  49.5
3  50.5
4  51.5
5  49.0
6  50.0
dtype: float64

六、升采样和插值

升采样是从低频率到高频率,这样会引入缺失值;

升采样时需要决定采样后结果中具体那个值代替原始的值;

当决定了替换原始值的值后,中间的值会按照频率进行添加;

frame = pd.DataFrame(np.random.randn(2,4),
          index = pd.date_range('1/1/2000',periods=2,freq='W-WED'),
          columns = ['Colorado','Texas','New York','Ohio'])
print(frame)
Colorado   Texas New York   Ohio
2000-01-05 -0.078765 1.389417 0.732726 0.816723
2000-01-12 -0.663686 0.744384 1.395332 -0.031715

1.升采样、前向填充

df_daily = frame.resample('D')
print(df_daily.ffill())
Colorado   Texas New York   Ohio
2000-01-05 -0.078765 1.389417 0.732726 0.816723
2000-01-06 -0.078765 1.389417 0.732726 0.816723
2000-01-07 -0.078765 1.389417 0.732726 0.816723
2000-01-08 -0.078765 1.389417 0.732726 0.816723
2000-01-09 -0.078765 1.389417 0.732726 0.816723
2000-01-10 -0.078765 1.389417 0.732726 0.816723
2000-01-11 -0.078765 1.389417 0.732726 0.816723
2000-01-12 -0.663686 0.744384 1.395332 -0.031715
print(df_daily.ffill(limit=2))
Colorado   Texas New York   Ohio
2000-01-05 -0.078765 1.389417 0.732726 0.816723
2000-01-06 -0.078765 1.389417 0.732726 0.816723
2000-01-07 -0.078765 1.389417 0.732726 0.816723
2000-01-08    NaN    NaN    NaN    NaN
2000-01-09    NaN    NaN    NaN    NaN
2000-01-10    NaN    NaN    NaN    NaN
2000-01-11    NaN    NaN    NaN    NaN
2000-01-12 -0.663686 0.744384 1.395332 -0.031715

2.重采样后的日期不一定与先前的日期有交集

print(frame)
Colorado   Texas New York   Ohio
2000-01-05 -0.078765 1.389417 0.732726 0.816723
2000-01-12 -0.663686 0.744384 1.395332 -0.031715
print(frame.resample('W-THU').ffill()) # 重采样后的结果开始为全NaN,使用ffill会使用2000-01-05和2000-01-12的值向前填充
Colorado   Texas New York   Ohio
2000-01-06 -0.078765 1.389417 0.732726 0.816723
2000-01-13 -0.663686 0.744384 1.395332 -0.031715

七、通过时期(period)进行重采样

1.将采样

frame = pd.DataFrame(np.random.randn(24,4),
          index = pd.period_range('1-2000','12-2001',freq='M'),
          columns = ['Colorado','Texas','New York','Ohio'])
print(frame[:5])
Colorado   Texas New York   Ohio
2000-01 -1.956495 -0.689508 0.057439 -0.655832
2000-02 -0.491443 -1.731887 1.336801 0.659877
2000-03 -0.139601 -1.310386 -0.299205 1.194269
2000-04 0.431474 -1.312518 1.880223 0.379421
2000-05 -0.674796 0.471018 0.132998 0.509761
annual_frame = frame.resample('A-DEC').mean()
print(annual_frame)
Colorado   Texas New York   Ohio
2000 -0.332076 -0.762599 0.046917 0.224908
2001 -0.152922 0.168667 -0.326439 -0.052034

2.通过convention决定在升采样后,那端来替换原来的值

# Q-DEC:以12月做为最后一个季度的最后一个月进行升采样.也就是1-3月是1季度,4-6月是2季度,7-9月是3季度,10-12月是4季度
print(annual_frame.resample('Q-DEC').ffill())
Colorado   Texas New York   Ohio
2000Q1 -0.332076 -0.762599 0.046917 0.224908
2000Q2 -0.332076 -0.762599 0.046917 0.224908
2000Q3 -0.332076 -0.762599 0.046917 0.224908
2000Q4 -0.332076 -0.762599 0.046917 0.224908
2001Q1 -0.152922 0.168667 -0.326439 -0.052034
2001Q2 -0.152922 0.168667 -0.326439 -0.052034
2001Q3 -0.152922 0.168667 -0.326439 -0.052034
2001Q4 -0.152922 0.168667 -0.326439 -0.052034
# 使用2000Q4替换2000、2001Q4替换2001,这两个值2000Q4和2001Q4之间就是升采样新增的值
print(annual_frame.resample('Q-DEC',convention='end').ffill())
Colorado   Texas New York   Ohio
2000Q4 -0.332076 -0.762599 0.046917 0.224908
2001Q1 -0.332076 -0.762599 0.046917 0.224908
2001Q2 -0.332076 -0.762599 0.046917 0.224908
2001Q3 -0.332076 -0.762599 0.046917 0.224908
2001Q4 -0.152922 0.168667 -0.326439 -0.052034

3.综合案例解析

Q-MAR:4-6月是1季度,7-9月是2季度,10-12月是3季度,1-3月是4季度;

2000-01到2000-03是2000Q4,2000-04到2000-6是2001Q1,以此类推;

2000转变为[2000Q4,2001Q1,2001Q2,2001Q3],2001转变为[2001Q4,2002Q1,2002Q2,2002Q3];

convention='end',那么会使用2001Q3替换原始的2000,2002Q3替换2001,中间的部分自动添加;

索引结果为[2001Q3,2001Q4,2002Q1,2002Q2,2002Q3];

print(annual_frame.resample('Q-MAR',convention='end').ffill())
Colorado   Texas New York   Ohio
2001Q3 -0.332076 -0.762599 0.046917 0.224908
2001Q4 -0.332076 -0.762599 0.046917 0.224908
2002Q1 -0.332076 -0.762599 0.046917 0.224908
2002Q2 -0.332076 -0.762599 0.046917 0.224908
2002Q3 -0.152922 0.168667 -0.326439 -0.052034

以上这篇Pandas时间序列:重采样及频率转换方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python快速查找算法应用实例
Sep 26 Python
Python使用Paramiko模块编写脚本进行远程服务器操作
May 05 Python
Python搭建APNS苹果推送通知推送服务的相关模块使用指南
Jun 02 Python
Python实现获取照片拍摄日期并重命名的方法
Sep 30 Python
Python3 处理JSON的实例详解
Oct 29 Python
python逆向入门教程
Jan 15 Python
Python调用百度根据经纬度查询地址的示例代码
Jul 07 Python
python调用其他文件函数或类的示例
Jul 16 Python
TensorFlow tensor的拼接实例
Jan 19 Python
TensorFlow实现打印每一层的输出
Jan 21 Python
详解python内置模块urllib
Sep 09 Python
利用python绘制中国地图(含省界、河流等)
Sep 21 Python
Python高阶函数、常用内置函数用法实例分析
Dec 26 #Python
pandas实现DataFrame显示最大行列,不省略显示实例
Dec 26 #Python
Python函数的定义方式与函数参数问题实例分析
Dec 26 #Python
PyCharm使用之配置SSH Interpreter的方法步骤
Dec 26 #Python
python DataFrame转dict字典过程详解
Dec 26 #Python
Numpy之reshape()使用详解
Dec 26 #Python
PyCharm使用Docker镜像搭建Python开发环境
Dec 26 #Python
You might like
PHP容易忘记的知识点分享
2013/04/30 PHP
PHP中include与require使用方法区别详解
2013/10/19 PHP
PHP json_decode函数详细解析
2014/02/17 PHP
flash 得到自身url参数的代码
2009/11/15 Javascript
Jquery.TreeView结合ASP.Net和数据库生成菜单导航条
2010/08/27 Javascript
jQuery实现鼠标移到元素上动态提示消息框效果
2013/10/20 Javascript
理解Javascript的call、apply
2015/12/16 Javascript
JavaScript设计模式经典之命令模式
2016/02/24 Javascript
Nodejs全局安装和本地安装的不同之处
2016/07/04 NodeJs
js获取地址栏参数的两种方法
2017/06/27 Javascript
微信小程序出现wx.navigateTo页面不跳转问题的解决方法
2017/12/26 Javascript
JavaScript实现仿Clock ISO时钟
2018/06/29 Javascript
vue监听对象及对象属性问题
2018/08/20 Javascript
JavaScript面试技巧之数组的一些不low操作
2019/03/22 Javascript
浅谈js闭包理解
2019/04/01 Javascript
详解Vue demo实现商品列表的展示
2019/05/07 Javascript
python生成器表达式和列表解析
2016/03/10 Python
为Python的Tornado框架配置使用Jinja2模板引擎的方法
2016/06/30 Python
Python数字图像处理之霍夫线变换实现详解
2018/01/12 Python
python素数筛选法浅析
2018/03/19 Python
Numpy数组转置的两种实现方法
2018/04/17 Python
python实现飞机大战微信小游戏
2020/03/21 Python
python基于socket进行端口转发实现后门隐藏的示例
2019/07/25 Python
Django文件存储 默认存储系统解析
2019/08/02 Python
用Python实现校园通知更新提醒功能
2019/11/23 Python
Python实现RabbitMQ6种消息模型的示例代码
2020/03/30 Python
Python获取excel内容及相关操作代码实例
2020/08/10 Python
python tqdm实现进度条的示例代码
2020/11/10 Python
推荐WEB开发者最佳HTML5和CSS3代码生成器
2015/11/24 HTML / CSS
以实惠的价格提供高品质的时尚:Newchic
2018/01/18 全球购物
KELLER SPORTS荷兰:在线订购最好的运动产品
2020/10/13 全球购物
化工机械应届生求职信
2013/11/04 职场文书
领导视察欢迎词
2014/01/15 职场文书
国际经济与贸易专业大学生职业规划书
2014/03/01 职场文书
2014年环境卫生工作总结
2014/11/24 职场文书
2015年国庆节标语大全
2015/07/30 职场文书